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Development of concurrent and distributed systems is notoriously difficult owing to the many subtle
and difficult-to-debug errors that may occur. Session types address the issues arising from commu-
nicating processes, and failures thereof, by enabling the specification and verification of commu-
nication protocols, providing correct-by-construction behavioural guarantees, e.g. communication
safety and deadlock-freedom. Implementations of session type theories commonly combine concur-
rency libraries with code generation tooling, enabling automatic production of protocol-conforming
code from high-level protocol specifications. Despite the proliferation of tooling for a range of pro-
gramming languages, most session type approaches assume that protocols are specified once. This
contrasts real-world development, where bugs are found and fixed, and new features are developed
over time. Presently, such code transformations, or refactorings, over session types are performed
manually. In this paper, we explore (work-in-progress) refactoring tooling for multiparty session
types that facilitates the introduction of crash-handling behaviour in protocols. We introduce, BigT, a
code generation and refactoring toolchain, that semi-automatically transforms protocol specifications
and the associated generated code, whilst preserving behavioural safety properties. In the full paper,
we will evaluate our approach on a range of examples from both the session types and the distributed
systems literature.

1 Introduction

Distributed systems are ubiquitous in modern society. They underpin key infrastructure, including fi-
nance, online banking, and telecommunication networks. However, developing such systems is noto-
riously difficult, since programmers must account for a broad spectrum of potential issues, including
deadlocks and communication mismatches, in spite of inevitable failures. Multiparty Session Types
(MPST) [15] are a formal framework for specifying communication protocols that statically guarantee
desirable behavioural properties, including communication safety, deadlock-freedom, and liveness.

MPST libraries are available for a wide range of programming languages [14], and many MPST
toolchains, e.g. SCRIBBLE [16], enable automatic generation of protocol-conforming code skeletons.
Generated code skeletons represent the communications behaviour of the protocol, and are specialised by
the programmer with appropriate business logic. The TEATRINO toolchain [3] extends SCRIBBLE with
support for crash-stop failures, where unreliable processes can arbitrarily crash (i.e. stop communicating)
and do not recover. TEATRINO’s code generation targets SCALA, leveraging its expressive type system
to define session types directly in code. TEATRINO is thus capable of generating fault-tolerant, protocol-
conforming, concurrent SCALA code.

Although these toolchains abstract over low-level implementation details when specifying protocols,
it remains that the programmer must nevertheless specify the protocol to be used. The introduction of
arbitrary process crashes complicates protocol specifications since all interactions with unreliable pro-
cesses must specify crash-handling behaviour. Introducing crash-handling behaviour to a core protocol,
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Figure 1: Top-Down Approach of MPST

where all participants are assumed to be reliable, whilst preserving the protocol’s behavioural properties,
presents a challenge that scales with the size of the core protocol and the number of participants to be
made unreliable. Consequently, even simple benchmark protocols can grow significantly [4]. Since in-
troducing crash-handling behaviour is currently a manual process, it is both laborious and error-prone,
and so hinders adoption of MPST tooling despite their advantages. This is further compounded by the
implicit assumption that the given protocol is static and code is generated only once. Consequently,
should the protocol be updated, new code must be generated, and manually integrated into the program.

Refactoring refers to the act of changing the internal structure of a program without changing its
functional behaviour [6]. We adopt a broader definition of refactoring — one that allows for differences
from full functional equivalence, while maintain the overall intent or semantics of the protocol [2]. Whilst
refactorings can be applied manually, tooling can provide a semi-automatic approach that reduces the
opportunity for error and ensures that code is transformed safely. A range of refactoring tools have been
developed for a number of programming languages and IDEs [1].

In this paper, we introduce BIGT, a novel extension of TEATRINO that facilitates the refactoring
of protocol specifications to semi-automatically introduce crash-handling behaviour. Moreover, our ap-
proach enables the simultaneous refactoring of both protocol specifications and any associated code
generated from protocols, ensuring that implementation and specification do not diverge. To that end, we
present a novel refactoring for MPST, Introduce Unreliability, that introduces crash-handling behaviour
for a selected participant of a protocol. This refactoring represents the conversion of a reliable partici-
pant to an unreliable participant, thereby introducing an assumption of unreliability. In the first instance,
we focus on non-recursive protocols and on terminating the protocol gracefully in the event of a crash.
To facilitate the definition of Introduce Unreliability, and expand the range of protocols to which it can
be applied, we additionally present Converge Protocol (see section 4). In the full version of this paper,
we will give the full definitions of our refactorings, and their implementations in BIGT. We will extend
Introduce Unreliability to both recursive protocols and other crash-handling behaviours. Finally, we will
evaluate our toolchain on examples from both the MPST and distributed systems literature.

2 Multiparty Session Types

Multiparty Session Types (MPST) facilitate the specification and verification of communication proto-
cols [15]. In this paper, we extend the TEATRINO toolchain [3], and thus assume the top-down asyn-
chronous MPST theory by Barwell et al. [5], which extends classical MPST [11] approaches by support-
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G ::= p→q:{mi(Bi).Gi}i∈I Transmission∣∣ µt.G Recursion∣∣ t Type variable∣∣ end Termination

S,T ::= p&{mi(Bi).Ti}i∈I

∣∣ p⊕{mi(Bi).Ti}i∈I External choice (receive), Internal choice (send)∣∣ µt.T
∣∣ t

∣∣ end Recursion, Type variable, Termination

Figure 2: Syntax of global and local types [3]. We elide runtime types and annotations.

ing crash-stop failures [7], i.e. where processes can crash arbitrarily and do not recover. Their theory is
top-down in the sense that it enables code generation with correct-by-construction guarantees of com-
munication safety, deadlock-freedom, and liveness. Fig. 1 gives an overview of the top-down approach.
Further details of syntax and semantics can be found in the paper originally introducing TEATRINO [3]
and full details in the journal version [5]. In this section, we introduce MPST and the top-down approach
via a pair of example protocols.

Global Types We first consider a simple Hierarchical Authenticator that controls access to both pub-
lic and secret resources, where public and secret are security levels inspired by information flow tech-
niques [8]. Our protocol has three participants: i) a user, who requests access to a resource; ii) an
authenticator, which can grant access to public resources; and iii) a guard, which can grant access to
secret resources. In the top-down approach, we first define the hierarchical authenticator protocol using
global types, which presents a bird’s-eye view of the communications between participants. We give the
global type for G1, below.

G1 = u→a:request(Cred).a→g:


log(Cred).a→u:validate(Cred).end

delegate(Cred).a→u:wait.g→u:

{
validate(Cred).end

deny.end

The protocol begins with u sending a request to a in order to be granted access to a resource. Here,
request is a label used to distinguish between messages, and Cred is a payload type used to define the
data being transmitted. In our example, Cred is the type of credential objects [9]. Insignificant payload
types are omitted, e.g. when a sends wait. If granting access to the requested resource is within the gift of
a, a first logs the validation with g, then responds to u with the validated credential object. Alternatively,
a delegates the request to g. It then instructs u to await authorisation from g, who either validates the
credential or denies access to the secret resource, ending the protocol.

In a distributed setting, any of the Hierarchical Authenticator participants may fail. TEATRINO facili-
tates the modelling of failures via optional reliability assumptions, where participants are assumed either
reliable (i.e. never crash) or unreliable (i.e. can crash arbitrarily). Reliability assumptions are expressed
by the set of reliable participants R ⊆ R, where R is the set of all participants in a given global type.
Crash detection is modelled on receiving participants, thus all interactions where the sender is unreli-
able must include a crash-handling branch. Crash-handling branches are identified by the reserved label
crash. In our Hierarchical Authenticator example, assuming R = {a,g}, G1 must be extended with a
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crash-handling branch when receiving from u:

G′
1 = u→a:


request(Cred).a→g:


log(Cred).a→u:validate(Cred).end

delegate(Cred).a→u:wait.g→u:

{
validate(Cred).end

deny.end

crash.a→g:abort.end

Here, when a awaits a request from u it may instead detect that u has crashed. Since crash-handling
branches are required only on interactions where the sender is unreliable, G′

1 does not require crash-
handling branches on interactions between a and g and where either a or g send messages to u.

Local Types Within the top-down approach, local types are automatically projected from global types
and represent the protocol from a given participant’s perspective. The projection of G′

1 onto u, denoted
G′

1 ↾ u, is:

G′
1 ↾ u= a⊕request(Cred).a&


validate(Cred).end

wait.g&

{
validate(Cred).end

deny.end

Here, u first sends (denoted ⊕) its request to a. It then receives (denoted &) either the validated credential
object, or an indication to await validation from g. In the latter case, u subsequently receives either the
validated credential object or an indication that the request has been denied, ending the protocol. Since
crash-handling branches denote crash detection of the sender by the receiver, crash labels are never sent
by u in G′

1 ↾ u. Conversely, projecting on a results in a crash-handling branch when receiving from u:

G′
1 ↾ a= u&

request(Cred).g⊕

{
log(Cred).u⊕validate(Cred).end

delegate(Cred).u⊕wait.end

crash.g⊕abort.end

Type-Checked Processes The final stage of the top-down approach uses local types to type-check
implementations of the protocol. In this paper, we focus on the SCALA implementation over the pro-
cess calculus formulation [3]. This approach exploits and extends the EFFPI concurrency library [13] to
directly represent local types in code, which are then used to type (and generate) concomitant implemen-
tations of processes acting as the given participant. EFFPI presents an Actor-based API with processes
that communicate via channels. The local type G′

1 ↾ u is represented in EFFPI in the form:

1 type U[C0 <: OutChannel[Request], C3 <: InChannel[Validate],
2 C5 <: InChannel[Deny | Validate], C7 <: InChannel[Wait | Validate]] =
3 Out[C0, Request]
4 >>: In[C7, Wait | Validate, (x0 : Wait | Validate) => U0[x0.type, C3, C5]]

The code snippet defines a local session type U that specifies a process which first sends a Request on an
output channel C0 (Out[C0, Request]), then waits to receive a message of either type Wait or Validate
on an input channel C7 (In[C7, Wait Validate, ...]|). The sequencing operator »: links these two
actions, indicating that the receive action follows the send.
The continuation after receiving the message is a function that takes the received value x0 and con-
tinues according to the type U0[x0.type, C3, C5], which varies depending on the exact message
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received. This allows the system to use conditional behavior based on runtime values, while still pre-
serving compile-time guarantees. Each channel is typed to be either OutChannel or InChannel which
means that they can not be used interchangeably.

Two-Seller In addition to our Hierarchical Authenticator, we consider a simple Two-Seller protocol in
which a buyer chooses to buy from one of two sellers, s1 and s2. Both sellers use the same courier.

G2 = b→s1:

{
buy.b→s2:reject.s1→c:request.s2→c:cancel.end
reject.b→s2:buy.s1→c:cancel.s2→c:request.end

Whereas the Hierarchical Authenticator protocol demonstrates a high degree of interaction between all
three processes, Two-Seller demonstrates how a single interaction can determine the communication
behaviour of its peers. The respective features of both protocols are useful for illustrating important
aspects of Introduce Unreliability and Converge Protocol.

3 Protocol-Level Refactoring for Introducing Unreliability Assumptions

In this section, we present a novel refactoring, Introduce Unreliability, for global types that converts a
reliable participant p into an unreliable participant. This is principally achieved by the introduction of
crash-handling branches to interactions where p is the sender. We initially take a best-effort approach
to failure-handling in that introduced crash-handling branches are designed to delay termination of the
protocol for as long as possible. We take this approach first in order to maintain best effort protocol
that need to keep going even when some participants crash. Additionally, this refactoring acts as a pre-
requisite for fail-gracefully refactoring, which we explore in the full version of the paper along with other
patterns.

Given a global type G that is projectable on all its participants R, the set of reliable participants R,
and a reliable role p ∈ R, Introduce Unreliability refactors G, producing G p, denoted G⇝R\p G p.
Projectability refers to the ability to correctly construct each participant’s local type from a global pro-
tocol, ensuring that the local types preserve all safety properties—full definitions can be found in [3].
To illustrate our approach, we apply Introduce Unreliability to the Two-Seller protocol from Section 2,
making only b unreliable.

G2⇝R\b G′
2 = b→s1:



buy.b→s2:

{
reject.s1→c:request.s2→c:cancel.end
crash.s1→c:request.s2→c:cancel.end

reject.b→s2:

{
buy.s1→c:cancel.s2→c:request.end
crash.s1→c:cancel.s2→c:cancel.end

crash.b→s2:

{
buy.s1→c:cancel.s2→c:request.end
crash.s1→c:cancel.s2→c:cancel.end

Here, Introduce Unreliability introduces two crash-handling branches to G2. The first interaction be-
tween b and s1 is extended with a crash-handling branch whose continuation is taken from the reject
branch. The selection of which branch to copy is made by the programmer. The interactions between b

and s2 are similarly extended with a crash-handling branch. In each case, the continuation is taken from
its peer (i.e. reject or buy).
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We remark that G′
2 may not reflect the final state of the intended fault-tolerant protocol: further

participants may be made unreliable and labels may be changed in the crash-handling branches to better
reflect the desired behaviour in the event of a crash. Introduce Unreliability is designed to ensure that
any introduced crash-handling branch preserves projectability of the protocol, thereby ensuring that the
resulting protocol retains communication safety, deadlock-freedom, and liveness properties.

In full paper, we will define Introduce Unreliability formally, and give an intuition of our approach
here. Introduce Unreliability proceeds according to two cases: merged communications and stand-alone
communications.

Stand-Alone Communications In cases where a crash-handling branch is introduced to an interaction
that is not merged with other interactions in the global type, the naïve approach suffices. The interested
reader can find the full definition of merging, with examples, in the original paper [3]. The naïve approach
refers to copying a peer’s continuation. For example, the interaction between b and s1 that begins the
protocol is not merged with any other interaction in G2. Accordingly, the continuation for the crash-
handling branch can be taken from either buy or reject branches. This produces the partially refactored,
non-projectable protocol G′′

2:

G′′
2 = b→s1:


buy.b→s2:reject.s1→c:request.s2→c:cancel.end
reject.b→s2:buy.s1→c:cancel.s2→c:request.end
crash.b→s2:buy.s1→c:cancel.s2→c:request.end

G′′
2 is not projectable because interactions between b and s2 are not yet refactored; however, if b is

assumed to be reliable, the protocol would be projectable. The refactoring then proceeds in order to
introduce all relevant crash-handling branches.

Merged Communications When projecting G2 on s2, two ostensibly distinct interactions in G2 (i.e.
b→s2:reject and b→s2:buy) are merged to form a single reception from b:

G2 ↾ s2= b&

{
reject.c⊕cancel.end

buy.c⊕request.end

This merging of two interactions in the global type occurs because s2 is not party to the preceding
interaction between b and s1 and is thus unaware of the message sent by b.

The consequence of this merging is that, when introducing crash-handling branches to interactions in
the global type, it does not suffice to consider only the interaction to which the crash-handling branch is
being introduced. In our Two-Seller example, we must consider b→s2:reject when introducing a crash-
handling branch to b→s2:buy and vice versa. Here, the naïve copying of a peer’s continuation does not
preserve projection, as it introduces a choice in the crash-handling branch:

G2 ↾ s2= b&


buy.c⊕request.end

reject.c⊕cancel.end

crash.c⊕

{
request.end

cancel.end

which can result in deadlock. For example, when s1 sends a request to c, c expects a cancel from s2. A
deadlock will occur in the event that s2 chooses to send request to c. In order to preserve projectability,
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G′′
1 = u→a:request(Cred).a→g:



log(Cred).a→u:


validate(Cred).end

crash.g→u:

{
validate(Cred).end

deny.end

delegate(Cred).a→u:


wait.g→u:

{
validate(Cred).end

deny.end

crash.g→u:

{
validate(Cred).end

deny.end

crash.a→u:


wait.g→u:

{
validate(Cred).end

deny.end

crash.g→u:

{
validate(Cred).end

deny.end

Figure 3: Naïve and incorrect transformation of G1, making a unreliable.

we therefore select one of the possible crash-handling branches for both interactions. Here, we select the
reject continuation:

G2 ↾ s2= b&


buy.c⊕request.end

reject.c⊕cancel.end

crash.c⊕cancel.end

4 Protocol-Level Refactoring for Enabling Unreliability

As seen in Section 3, some interactions in a global type are associated via merging when projecting on
a given participant. In our Two-Seller protocol, the associated interactions occur in all peer branches.
However, projection does not preclude protocols where different branches may include different numbers
of subsequent interactions. An example of this can be found in our Hierarchical Authenticator example,
where g in Section 2 only communicates with u when a delegates a request. Protocols that diverge in
this manner can render it impossible to introduce unreliability assumptions to one or more participants.
For example, consider the naïvely transformed global type G′′

1 in Fig. 3, a is made unreliable in G1. This
transformation does not preserve projectability since a deadlock can now occur. Specifically, a deadlock
occurs when a crashes after it has logged the request with g, but before a sends the validated credential:
u expects a message from g, but g has ended.

Whilst we define Introduce Unreliability to fail when it detects such diverging protocols, said di-
verging protocols present a separate refactoring opportunity. For example, by first transforming the
communication of G1 to include an additional interaction between g and u:

G3
1 = u→a:request(Cred).a→g:


log(Cred).a→u:validate(Cred).g→u:validate(Cred).end

delegate(Cred).a→u:wait.g→u:

{
validate(Cred).end

deny.end

If granting access to the requested resource is within the gift of a, g now sends a copy of the validated
credential to u that grants access to the requested public resource. In practice, this may be viewed as an
additional step in order to ensure correctness of the validation.
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1 global protocol PingPong(reliable role P, reliable role Q) {
2 ping(T) from P to Q;
3 pong(T) from Q to P;
4 }

Figure 4: Ping-Pong protocol in SCRIBBLE

1 def p(c0:OutChannel[Ping],c1:InChannel[Pong]):P[c0.type, c1.type]={
2 send(c0, new Ping(new T())) >> {
3 receive(c1) {(x0 : Pong) =>
4 nil
5 }
6 }
7 }

Figure 5: Code Skeleton

Accordingly, we propose a second refactoring Converge Protocol, for removing such divergence in
protocols. We will give the full definition of Converge Protocol in the full paper. Whereas we conjec-
ture that protocols produced by applications of Introduce Unreliability may simulate [12] their original
protocols, the same cannot be said of protocols refactored via Converge Protocol. For example, the
programmer could instead refactor G1 such that g does not communicate with u, as in OAuth2 [10].

u→a:request(Cred).a→g:

{
log(Cred).g→a:commit.a→u:validate(Cred).end
delegate.g→a:validate(Cred).a→u:validate(Cred).end

Since such a refactoring represents a potentially significant change to a protocol’s communication be-
haviour, the programmer must determine whether such a change is acceptable.

5 Refactorings for Code

In this section, we illustrate extensions to EFFPI and the SCRIBBLE protocol description language that
facilitate refactoring at the code-level. These extensions are designed to enable transformations to already
generated code in situ, when applying Introduce Unreliability and Converge Protocol to global types.

The TEATRINO dialect of the SCRIBBLE protocol description language permits a programmatic rep-
resentation of global types in order to enable code generation. For example, a simple Ping-Pong protocol
that has the global type, G3 = p→q:ping(T).q→p:pong(T).end can be represented in SCRIBBLE via the
protocol definition in Fig. 4. Participants p and q are declared as being reliable. In generating SCALA

code skeletons, TEATRINO projects the protocol onto all participants, obtaining a set of local types, and
thence derives EFFPI representations and implementations of the participants, where each participant is
played by one process. Fig. 5 gives the skeleton implementation that conforms to G3 ↾ p: it constructs a
SCALA case class new T() representing payload type T, sends ping on Line 2 via the send construct,
receives pong from q on Line 3 via the receive construct, and then terminates on Line 4 via the nil
construct.

Although generated code conforms to the given protocol, the programmer must subsequently extend
the skeleton with business logic, e.g. specific values to be sent and concrete decision procedures by which
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1 global protocol PingPong(reliable role P, reliable role Q) {
2 @SendingName firstSend
3 @ReceivingName consumePing
4 ping(T) from P to Q;
5 @GeneralName pongInteraction
6 pong(T) from Q to P;
7 }

Figure 6: Annotated PingPong protocol in Scribble

1 abstract class PingPong {
2 ...
3 def firstSend(state:pStateType):Ping
4 def pongInteractionReceiving(message:Pong,state:pStateType):Unit
5 ...
6

7 def p(ch0:OutChannel[Ping],ch1:InChannel[Pong]):P[ch0.type,ch1.type]={
8 send(ch0, firstSend(pState)) >> {
9 receive(ch1) {(x0 : Pong) =>

10 pongInteractionReceiving(x0,pState)
11 nil
12 }
13 }
14 }
15 ...
16 }

Figure 7: Abstracted Code Skeleton

internal choices are made, in order to integrate the generated code into both existing and novel code. This
requires a level of expertise and familiarity with both session types and EFFPI from the programmer. A
consequence of which is a lack of clarity in terms of what should be modified, and what can be modified
without modifying the communication structure, particularly as protocols scale in size. For example, in
Fig. 5, the programmer should introduce code between Lines 1 and 2 to prepare the payload, and between
Lines 3 and 4 to process the received message. Moreover, since any modification to the protocol and code
regeneration will produce new code, any extensions implemented by the programmer must be manually
re-integrated in the newly generated code skeleton. As before the difficulty of this task scales with the
size of the protocols.

In order to address these issues, we extend SCRIBBLE syntax with annotations for interactions, en-
abling the programmer to provide function names that are propagated to the generated code. We illustrate
this in Fig. 6, introducing (function) name annotations. On Line 2, p is defined to use a function named
firstSend, whereas on Line 3, q is defined to use a function consumePing for process the received
value. For additional flexibility, name annotations permit partial function names, e.g. on Line 5 of Fig. 6,
where this function name will be appended with a suffix of Sending or Receiving, according to the
participant’s role in the interaction.

When generating code, BIGT now creates an abstract class (e.g. Fig. 7) in which the corresponding
abstract functions are declared. Their types are determined by the transmission type (input/output) and
the involved message labels—for example, as shown in Lines 3–4. This indicates to the programmer
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1 class ConcretePingPong extends PingPong {
2 ...
3 override def firstSend(state:pStateType):Ping={
4 return new Ping(new T("some","args"))
5 }
6 override def pongInteractionReceiving(message:Pong,state:pStateType):Unit={
7 println("Some custom behaviour")
8 }
9 ...

10 }

Figure 8: Concrete PingPong Implementation

that definitions need to be provided, with additional guidance from the compiler regarding any missing
or extraneous functions. Novel implementations can be provided via concrete classes that extend the
abstract declarations, e.g. as in Fig. 8. Alternatively, existing functions can be provided, with potentially
minor tool-driven modifications to ensure proper adherence to the generated EFFPI interface.

Moreover, this approach facilitates code-level refactoring. A refactoring applied to the global type
preserves programmer-given annotations. When introducing new interactions, as in Introduce Unreli-
ability, the programmer can provide a name for the corresponding introduced function. Consequently,
when skeleton code is generated as a result of the refactoring, programmer-provided code is maintained
and easily adapted for the updated protocol.

In the full version of this paper, we will present full definitions and implementations of our code-level
refactorings, and their integration with Introduce Unreliability and Converge Protocol.
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Techniques and tools for program verification often require a termination proof as an ingredient of
correctness proofs for other program properties (e.g., program equivalence). However, the range of
termination proof techniques is vast, so implementing them for every single programming language
anew would not be an efficient use of time for tool developers.

In this extended abstract, we propose an indirect route for proving termination of Scala pro-
grams, via a translation to constrained term rewriting systems so that termination of the rewrite
system implies termination of the Scala program. This allows for separating the language-specific
and the language-independent aspects of the analysis into different tools. We have implemented
our approach in the Stainless program verifier. Preliminary experiments with the termination prover
AProVE indicate that this approach can lead to an increased termination success rate compared to
existing approaches.

1 Introduction

One of the tasks for program analysis tools is to prove termination of their input programs. This task 
matters both on its own and also as a precondition for proof techniques for other properties, such as pro-
gram equivalence [20] and properties expressed using multiple user-defined function invocations. While 
implementing language-specific proof techniques is an option, it is arduous and ignores opportunities for 
reuse of existing infrastructure: over the last decades, techniques and tools for push-button termination 
analysis of different computational formalisms have matured, particularly so for various flavors of Term 
Rewriting Systems (TRSs). This suggests a two-stage approach to termination analysis by program anal-
ysis tools with a separation of concerns: (1) extract a TRS from the input program such that termination 
of the TRS implies termination of the input program, and (2) call an external termination tool for TRSs 
to get a termination proof (if one can be found).

Similar two-stage approaches for analysis of properties via term rewriting have been used in the 
literature for proofs of termination of programs in many languages (Haskell [8], Java [25], Prolog [9,27], 
and C [6, 15]), for proofs of equivalence (e.g., in C programs [6, 15]), or inference of complexity bounds 
(for Prolog [9], Jinja [22], and OCaml [1]).

A strength of term rewriting is that it can express inductive data types in a natural way. However, 
classic term rewriting has a drawback for this use in program analysis: it does not offer a direct rep-
resentation of primitive data types, which are predefined in most programming languages (e.g., integer 
numbers and their operations). As classic term rewriting is Turing-complete, it is possible to encode 
these data types and their operations via terms and recursive rewrite rules. However, a lot of the available 
domain knowledge baked into the programming language semantics (e.g., the meaning of the operators 
such as + and ∗) would be “obfuscated in translation”, so the existing infrastructure for automated rea-
soning, such as SMT solvers, cannot directly benefit from this domain knowledge, e.g., in the search for
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expr ::=
literal
| id
| expr ∼ expr
| not expr
| expr.id
| id(expr, ..., expr)
| val id = expr in expr
| if expr then expr else expr
| if expr isInstanceOf id then expr else expr
| assume(expr) in expr

literal ::=
integerLiteral
| true
| false

Figure 1: Input syntax, where ∼ is a symbol in
{+, −, ∗, /, %, and, or, >, ≥ , <, ≤ , ==}.

rule ::=
term → term
| term → term ⟨ term ⟩

term ::=
literal
| id
| id ( term∗ )
| term ∼ term
| ! term

literal ::=
integerLiteral
| TRUE
| FALSE

Figure 2: LCTRS syntax, where ∼ is a symbol
in {+, −, ∗, /, %, and, or, >, ≥ , <, ≤ , ==}.

a termination proof step. This is why in recent years, constrained term rewriting [4, 11, 13] has gained
popularity for applications in program analysis. This form of term rewriting is augmented with built-in
logical constraints, which can be analyzed by SMT solvers. Kop and Nishida [13] proposed Logically
Constrained Term Rewriting Systems (LCTRSs) as an attempt at unifying different forms of constrained
term rewriting. This formalism has gained traction in the community, and several research groups have
built tools to analyze different properties of LCTRSs (e.g., Cora [16], CRaris [23], crest [28], Ctrl [14],
RMT [2], TcT [32]).

In this work, we propose a translation from Scala programs to LCTRSs such that termination of
the generated LCTRS implies termination of the original Scala program. We have implemented the
translation in the Stainless program verifier [17]. Stainless already contains a pipeline that successively
“desugars” Scala programs for their analysis and applies program transformations between different tree
representations of the program. Our prototype implementation enters the tool chain at a suitable level,
allowing Stainless to extract an LCTRS for delegation of the termination analysis to an external tool.

To analyze termination of the extracted LCTRSs, our implementation calls the program analysis tool
AProVE [7]. As Scala (more precisely, the language fragment that our translation supports) uses a call-
by-value evaluation strategy, a proof of innermost termination of the generated LCTRS suffices to prove
termination of the original Scala program. In this extended abstract, we present our Scala-to-LCTRS
export and a preliminary evaluation.

2 Language and Background

We use LCTRSs [13] as an intermediate representation for proving termination of Scala [24] programs.
This section defines the subset of Scala that we consider and gives a brief background on LCTRSs.

We consider a purely functional subset of Scala. The input to our system is an abstract syntax tree
(AST) that we extract from Stainless at the last stage of its transformation pipeline. We define the
supported AST syntax in Figure 1.
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An LCTRS is defined as a sequence of rules l → r ⟨ C ⟩, where l and r are terms, and C is a
logical constraint. We define the supported LCTRS syntax in Figure 2. Termination of the LCTRSs that
we generate can be checked by external tools such as AProVE [7], which we used in our evaluation,
Ctrl [14], or Cora [16]. Initial experimentation with the three tools indicated that AProVE was the most
successful in dealing with systems originating from automated translations, which tend to have many
more rewrite rules than a hand-optimized system, as we illustrate on an example in the next section. Our
translation from Scala to LCTRSs is inspired by the related work on converting C programs to LCTRS
in the c2lctrs tool [15]. After illustrating our translation on an example Scala program in Section 3, we
define the translation rules in Section 4.

3 Illustrative Example: Formula Programming Assignment

This section gives an overview of our Stainless to LCTRS export on one illustrative example.
We consider the example student submission from the formula benchmark in related work on auto-

mated grading of programming assignments [20,29]. Specifically, we consider a minimized definition to
focus on the essence of our translation:

sealed abstract class Formula
case object True extends Formula
case object False extends Formula
case class Not(p: Formula) extends Formula
case class Imply(l: Formula, r: Formula) extends Formula

In our evaluation in Section 5, we consider the full definition from the formula benchmark, which includes
cases for boolean variables, conjunction and disjunction.

Figure 3 shows the Scala program under analysis. This example is particularly challenging for ter-
mination proving due to the recursive call f(Not(l)), whose argument does not trivially decrease over
Imply(l, r). In Stainless, measure inference for functions on algebraic data types considers the structural
size of data type arguments. In our example, the default size function defines the size of Imply(True, True)
as 1 + 0 + 0 = 1, and the size of Not(True) as 1 + 0 = 1 (not decreasing). As a result, Stainless fails to
automatically infer a termination measure for this function and cannot prove termination. We thus turn
to external termination provers.

The remainder of Figure 3 shows the input of our translation (Stainless tree as defined in Figure 1)
and the output of our translation (LCTRS rules as defined in Figure 2). Our translation traverses the
input Stainless trees and iteratively constructs the corresponding LCTRS rules. To capture the semantics
of the program control flow, during the translation we keep track of conditions as constraints along
the execution path. For example, the else branch from if f(Not(s.l)) then true else f(s.r) produces the
following condition:

f16(t, Imply(s_l, s_r), tmp1) → f18(t, Imply(s_l, s_r), tmp1) ⟨ !tmp1 ⟩

which is then preserved in the subsequent rules for this else branch (symbols f18 to f22).
The AProVE termination prover successfully proves termination of our resulting LCTRS, ensuring

termination of the original Scala program.
This simplified example already illustrates interesting aspects of our translation, such as handling of

algebraic data types (ADTs) and ADT selectors.
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// Scala source code
def f(t: Formula): Boolean = t match

case True ⇒ true
case False ⇒ false
case Not(t) ⇒ if f(t) then false else true
case Imply(l, r) ⇒ f(Not(l)) || f(r)

// Intermediate representation of source code
def f(t: Formula): Boolean =

val s: Formula = t
if s isInstanceOf True then true
else if s isInstanceOf False then false
else if s isInstanceOf Not then

val tb: Boolean = f(s.p)
if tb then false else true

else if s isInstanceOf Imply then f(Not(s.l)) || f(s.r)
f(t) → f1(t, t)
f1(t, True) → f2(t, True)
f1(t, Not(s_p)) → f3(t, Not(s_p))
f1(t, False) → f3(t, False)
f1(t, Imply(s_l, s_r)) → f3(t, Imply(s_l, s_r))
f2(t, True) → f22(t, True, TRUE)
f3(t, False) → f4(t, False)
f3(t, Not(s_p)) → f5(t, Not(s_p))
f3(t, True) → f5(t, True)
f3(t, Imply(s_l, s_r)) → f5(t, Imply(s_l, s_r))
f4(t, False) → f22(t, False, FALSE)
f5(t, Not(s_p)) → f6(t, Not(s_p))
f5(t, True) → f12(t, True)
f5(t, False) → f12(t, False)
f5(t, Imply(s_l, s_r)) → f12(t, Imply(s_l, s_r))
f6(t, Not(s_p)) → f7(t, Not(s_p), s_p)
f7(t, Not(s_p), tmp0) → f8(t, Not(s_p), tmp0, f(tmp0))
f8(t, Not(s_p), tmp0, r_f(w)) → f9(t, Not(s_p), w)
f9(t, Not(s_p), tb) → f10(t, Not(s_p), tb) ⟨ tb ⟩
f9(t, Not(s_p), tb) → f11(t, Not(s_p), tb) ⟨ !tb ⟩
f10(t, Not(s_p), tb) → f22(t, Not(s_p), FALSE) ⟨ tb ⟩
f11(t, Not(s_p), tb) → f22(t, Not(s_p), TRUE) ⟨ !tb ⟩
f12(t, Imply(s_l, s_r)) → f13(t, Imply(s_l, s_r))
f12(t, Not(s_p)) → f21(t, Not(s_p))
f12(t, True) → f21(t, True)
f12(t, False) → f21(t, False)
f13(t, Imply(s_l, s_r)) → f14(t, Imply(s_l, s_r), Not(s_l))
f14(t, Imply(s_l, s_r), tmp2) → f15(t, Imply(s_l, s_r), tmp2, f(tmp2))
f15(t, Imply(s_l, s_r), tmp2, r_f(w)) → f16(t, Imply(s_l, s_r), w)
f16(t, Imply(s_l, s_r), tmp1) → f17(t, Imply(s_l, s_r), tmp1) ⟨ tmp1 ⟩
f16(t, Imply(s_l, s_r), tmp1) → f18(t, Imply(s_l, s_r), tmp1) ⟨ !tmp1 ⟩
f17(t, Imply(s_l, s_r), tmp1) → f22(t, Imply(s_l, s_r), TRUE) ⟨ tmp1 ⟩
f18(t, Imply(s_l, s_r), tmp1) → f19(t, Imply(s_l, s_r), tmp1, s_r) ⟨ !tmp1 ⟩
f19(t, Imply(s_l, s_r), tmp1, tmp3) → f20(t, Imply(s_l, s_r), tmp1, tmp3, f(tmp3)) ⟨ !tmp1 ⟩
f20(t, Imply(s_l, s_r), tmp1, tmp3, r_f(w)) → f22(t, Imply(s_l, s_r), w) ⟨ !tmp1 ⟩
f21(t, s) → f22(t, s, e)
f22(tmp4, tmp5, ret) → r_f(ret)

Figure 3: Input to Stainless: Scala program (top-left). Input to our translation: Stainless tree at the last
pipeline stage, after pattern matching elimination (top-right). Output of our translation: LCTRS rules
(bottom). The ⟨ ⟩ syntax denotes the constraints gathered along the execution path.
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4 Scala to LCTRS Translation

In this section, we present our translation from Scala to LCTRS.
We take a Scala program as an abstract syntax tree at the last stage of the Stainless pipeline (Inox

trees). Figure 1 illustrates the syntax of expressions in these input trees. We then perform a series of
transformations to obtain the output trees corresponding to a LCTRS. Figure 2 illustrates the syntax of
these output trees. Our pretty-printer then exports the resulting LCTRS rules such that their termination
with regard to innermost rewriting can be analyzed by AProVE.

We define the series of transformations as follows:

1. Pre-transformation phase

2. Translation phase

3. Post-transformation phase.

The pre-transformation phase consists of let-transformations (introducing let bindings for expressions)
and short-circuiting (eliminating and/or operators by transforming them to if-then-else). For example, in
our formula submission in Section 3, the boolean expression f(Not(s.l)) || f(s.r) is transformed to:

val tmp1 = f(Not(s.l))
if tmp1 then true else f(s.r),

which produces rules corresponding to the symbols f14 to f22 in Figure 3.
The post-transformation phase consists of introducing function wrappers, that is, rules that simplify

extraction of function results. For example, in our formula submission in Figure 3, the symbol r_f enables
the extraction of function f’s result.

The main translation phase is defined in the convert function, which takes the following input:
– f , the name of the function under conversion;
– i, the number of symbols already declared for this function;
– −→x = [x1, ...,xn], a sequence of variables which are known at the start of the function or block;
– −→y = [y1, ...,ym], a sequence of locally declared variables (to be erased at the end of the function or

block);
– R: the set of rules declared so far;
– C: the constraints so far;
– S: the statement to convert.

It produces the following output:
– R’: the resulting set of rules (the original set R union rules from converting the S statement);
– j: the last index of symbols declared for the S statement.

At the end of this conversion, the resulting set R’ defines the resulting LCTRS. To translate a full program,
we convert each individual function and then take the union of the resulting sets R’ for each function.

We next consider the definition of convert for each case in Figure 1. We use the syntax −→x to denote
a sequence of elements x1, ...,xn and the ::: symbol to denote sequence concatenation. We denote
substitution of t by b in a by a [t := b ]. In each invocation of convert, Stainless expressions are highlighted
in gray.

4.1 Assume Statements

We define convert( f , i, −→x , −→y , R, C, assume(p) in s ) := convert( f , i, −→x , −→y , R, p ∧ C, s ).
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4.2 Constants and Variables

We define convert( f , i, −→x , −→y , R, C, a ) := (R’, i +1), where:
– R’ = R ∪ { fi(−→x , −→y ) → fi+1(−→x , −→y , a) ⟨C ⟩}

4.3 Binary Operators

For each binary operator ∼1, we define convert( f , i, −→x , −→y , R, C, a ∼ b ) := (R’, i +1), where:
– R’ = R ∪ { fi(−→x , −→y ) → fi+1(−→x , −→y , a ∼ b) ⟨C ⟩}

4.4 Not

We define convert( f , i, −→x , −→y , R, C, not a ) := (R’, i +1), where:
– R’ = R ∪ { fi(−→x , −→y ) → fi+1(−→x , −→y , not a) ⟨C ⟩}

4.5 Function Invocations

We define convert( f , i, −→x , −→y , R, C, g(e1, ...,en) ) := (R’, i +2), where:
– R’ = R ∪ { fi(−→x , −→y ) → fi+1(−→x , −→y ,g(e1, ...,en)) ⟨C ⟩,

fi+1(−→x , −→y , rg(t)) → fi+2(−→x , −→y , t) ⟨C ⟩}
Here, the term rg(t) denotes extraction of function g’s result. This term is introduced in the post-

transformation phase, as the right-hand side of the last rule in g’s translation. For example, in the formula
submission in Figure 3, the function call f(r) evaluates to the term r_f(w) below the symbol f20.

4.6 Let Bindings

To convert a statement val b = d in e:
– Let (R1, k) be the result of convert( f , i, −→x , −→y , {}, C, d )
– Let R1’ be R1 [ fk(e1, ...,em) := fk(e1, ...,e|⃗x|+|⃗y|,em)]
– Let R2 be R ∪ R1’

We define convert( f , i, −→x , −→y , R, C, val b = d in e ) := convert( f , i, −→x , −→y ::: [b], R2, C, e ).
Here, the sequence e1, ...,e|⃗x|+|⃗y|,em denotes the removal of local variables which are out of scope at

the end of a block. The same substitution takes place in the branches of the if expressions (Section 4.7)
and in pattern matching cases (Section 4.9).

4.7 If Expressions

To convert a statement if c then s else t:
– Let (R2, k) be the result of convert( f , i +1, −→x ::: −→y , [], {}, c ∧ C, s )
– Let (R3, n) be the result of convert( f , k, −→x ::: −→y , [], {}, !c ∧ C, t )
– Let R2’ be R2 [ fk(e1, ...,em) := fn(e1, ...,e|⃗x|+|⃗y|,em)]
– Let R3’ be R3 [ fn(e1, ...,em) := fn(e1, ...,e|⃗x|+|⃗y|,em)]

We define convert( f , i, −→x , −→y , R, C, if c then s else t ) := (R’, n), where:
– R’ = R ∪ { fi(−→x , −→y ) → fi+1(−→x , −→y ) ⟨ c ∧ C ⟩, fi(−→x , −→y ) → fk(−→x , −→y ) ⟨ !c ∧ C ⟩} ∪ R2’ ∪ R3’
For example, a function

1At this stage of the translation, ∼ can be any of the symbols in {+, −, ∗, /, %, >, ≥ , <, ≤ , ==}. The symbols
and, or cannot appear because they get eliminated in the pre-transformation phase.
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def foo(x: BigInt): BigInt =
if x > 0 then g(x) else h(x)

would be translated to:

foo0(x) → foo1(x, x)
foo1(x, tmp5) → foo2(x, tmp5, 0)
foo2(x, tmp5, tmp6) → foo3(x, tmp5 > tmp6)
foo3(x, tb) → foo4(x, tb) ⟨ tb ⟩
foo3(x, tb) → foo6(x, tb) ⟨ !tb ⟩
foo4(x, tb) → foo5(x, tb, g(x)) ⟨ tb ⟩
foo5(x, tb, ret_g(fresh0)) → foo8(x, tb, fresh0) ⟨ tb ⟩
foo6(x, tb) → foo7(x, tb, h(x)) ⟨ !tb ⟩
foo7(x, tb, ret_h(fresh1)) → foo8(x, tb, fresh1) ⟨ !tb ⟩
foo8(tmp7, tmp8, ret1) → ret_foo(ret1)

This example shows how the control flow of an if expression is represented with the help of different
function symbols foo4 and foo6 such that a rewrite sequence starting from foo(t) for an integer t will
result in exactly one of the branches of the if expression being evaluated.

In contrast, with a translation via rules

foo(x) →myif(x > 0, foo1(x), foo2(x))
foo1(x) → r_g(g(x))
foo2(x) → r_h(h(x))
myif(TRUE, x, y) → x
myif(FALSE, x, y) → y

with a single function symbol myif for all if expressions, both branches would be evaluated (which is why
we avoid this alternative translation).

4.8 ADT Selectors (Field Accesses)

To convert a statement a.ek:
– Let −→xy’ be (−→x ::: −→y )[a := A (−→w )], where A is the constructor of a.ek and −→w fresh field variables.

We define convert( f , i, −→x , −→y , R, C, a.ek ) := (R’, i +1), where:
– R’ = R ∪ { fi(−→xy’) → fi+1(−→x , −→y , wk) ⟨C ⟩}

4.9 Pattern Matching

To convert a statement if a isInstanceOf Al then s else t:
– Let { A1, ..., Am } be all constructors of the supertype of Al
– Let −→xy1, ... , −→xym be (−→x ::: −→y )[a := A1 (−→u )], ..., (−→x ::: −→y )[a := Am (−→v )], respectively
– Let (R2, k) be the result of convert( f , i +1, −→xyl , [], {}, C, s )
– Let (R3, n) be the result of convert( f , k, −→x ::: −→y , [], {}, C, t )
– Let R2’ be R2 [ fk(e1, ...,em) := fn(e1, ...,e|⃗x|+|⃗y|,em)]

We define convert( f , i, −→x , −→y , R, C, if a isInstanceOf Al then s else t ) := (R’, n), where:
– R’ = R ∪ {

fi(−→xy1) → fk(−→xy1) ⟨C ⟩,..., fi(−−−→xyl−1) → fk(−−−→xyl−1) ⟨C ⟩,
fi(−→xyl) → fi+1(−→xyl) ⟨C ⟩,
fi(−−−→xyl+1) → fk(−−−→xyl+1) ⟨C ⟩,..., fi(−→xym) → fk(−→xym) ⟨C ⟩
} ∪ R2’ ∪ R3
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For example, consider the following statement from the formula submission in Figure 3:
if s isInstanceOf Imply then f(Not(s.l)) || f(s.r). Here, Al corresponds to Imply, the set { A1, ..., Am } cor-
responds to the set of constructors of the type Formula, and the sequence −→xy1, ... , −→xym at this point
in the translation corresponds to (s, True), (s, False), (s, Not(s_p)), (s, Imply(s_l, s_r)), resulting in the
following rules:

f12(s, True) → f21(s, True) // fi → fk
f12(s, False) → f21(s, False) // fi → fk
f12(s, Not(s_p)) → f21(s, Not(s_p)) // fi → fk
f12(s, Imply(s_l, s_r)) → f13(s, Imply(s_l, s_r)) // fi → fi+1

where f13 and f21 lead to the then and else branches, respectively.

5 Evaluation

We next present our evaluation of termination checking techniques using our LCTRS export on existing
benchmarks drawn from programming assignments. In our evaluation, we consider AProVE’s Integer
Term Rewrite Systems format (.itrs) [4] and use AProVE to prove their termination.2

We compare our results to two existing techniques in Stainless for proving termination: measure
inference and measure transfer. Measure inference in Stainless was partially carried over from the Leon
verifier [30], whose termination analysis was developed in the MSc thesis of Nicolas Voirol, along with
support for generic types and quantifiers [31]. Subsequent work introduced a foundational type system
that enforces termination [12]. Measure transfer was later introduced in [21], providing significant au-
tomation over measure inference for batched termination proving of equivalent programs, while requiring
the original program to be annotated with a termination measure as a termination proof.

Table 1 shows the results of our evaluation. We consider the formula and sigma assignments from [20],
as well as the prime and gcd assignments from the experience report in [19]. Each benchmark contains
one or more reference solutions annotated with termination measures used for measure transfer, and
equivalent student submissions with no measure annotations, where automated measure inference fails.
Columns Inference and Transfer show the number of submissions successfully proven terminating by
Stainless using measure inference and measure transfer, respectively. Column LCTRS shows number of
submissions successfully proven terminating by AProVE.

In the formula benchmark, for 37 submissions where measure inference fails, the evaluation in [20]
uses manual annotations to prove termination of 25 submissions (for the remaining submissions, the
manual annotator did not find a termination measure). In contrast, measure transfer automatically proves
correctness of 27 submissions (73%). The LCTRS export to AProVE proves termination of 24 submis-
sions (65%), which is a significant improvement over measure inference in Stainless. Seven submissions
could not be checked due to a limitation of our translation in handling Scala constructs. In the sigma
benchmark, measure transfer succeeds for 678 submissions (96%), out of 704 submissions that required
manual annotations in the previous evaluation in [20], due to limitations of measure inference. The 26
submissions where measure transfer fails are due to either equivalence proof failures (11) or due to in-
troducing inner functions that exist only in the candidate submission (15). We were unable to evaluate
our LCTRS export on this benchmark due to a lack of support for higher-order functions in AProVE’s
ITRSs. Our experiments show that, when removing the higher-order argument in the sigma submis-
sion, AProVE manages to prove termination, while measure inference in Stainless still fails. Since the

2Strictly speaking, ITRSs are not LCTRSs, but innermost termination of the LCTRSs when viewed as ITRSs implies
innermost termination of the LCTRS, and our LCTRS export currently does not use features that are not supported by ITRSs.
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Table 1: Evaluation results on programming assignments. Column LOC shows average number of lines
of code per program. Columns F and D indicate average number of function definitions and average
number of measure annotations per program, respectively. Columns R and S indicate the number of
reference programs and number of submissions, respectively. The last three columns show the results
of termination analysis. For each run, we set a 10 second timeout per Z3 solver query in Stainless and
a 10 minute overall timeout for AProVE. Column Total Proven shows the total number of submissions
successfully proven terminating, either using measure transfer or by AProVE.

Name LOC F D R S Inference Transfer LCTRS Total Proven

formula 59 2 1 1 37 0 27 24 28
sigma 10 1 1 3 704 0 678 0 678
prime 21 4 2 2 22 0 5 14 14
gcd 9 1 1 2 41 0 22 15 27

higher-order argument does not affect termination in this case, in the future, we will explore program
slicing techniques to remove higher-order arguments in the LCTRS export. In the prime benchmark,
we encounter submissions that, when manually annotated, pass termination checks. However, measure
transfer fails, because the inner function’s measure in the reference solutions gives a negative measure
when transferred to the inner function of the submission. LCTRS export outperforms measure transfer
in this benchmark, succeeding for 64% of purely-functional submissions (compared to 23% when using
measure transfer). Out of three benchmarks with multiple reference programs, only gcd has different
termination measures. Termination analysis via the LCTRS export to AProVE outperforms measure in-
ference in Stainless on this benchmark. However, this could be due to the use of unbounded integers
in the LCTRS export, instead of bounded integers in the original submissions. When using unbounded
integers in Stainless, measure inference succeeds for 31 submissions (out of 41 which were previously
timing out due to bounded integer arithmetic).

Overall, our evaluation suggests that our approach using LCTRS export with AProVE provides a
significant improvement over the measure inference in Stainless, but is still less effective than measure
transfer. However, unlike our approach, measure transfer requires initial manual measure annotations
in the reference program and is only useful when there is more than one program under analysis. Our
approach using LCTRS export is more general.

6 Discussion and Future Work

Our work has several limitations in its current state.

Primitive Data Types So far, the only primitive data types that our exported LCTRSs contain are
unbounded integers and booleans. The reason is that our current translation is backwards compatible to
ITRSs as an early form of constrained rewriting [4]. This is why we currently export both unbounded and
bounded Scala integers to unbounded integers on LCTRS level. Consequently, our termination proofs
are correct only if there are no overflows in the original Scala program. To ensure correctness, Stainless
checks for overflows prior to running the LCTRS export.

To illustrate the issues with the discrepancy between bounded integers in Scala and their translation
as unbounded integers, we consider the following example program:
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def overflow_fun(i: Int, n: Int): Int =
if i ≤ n then overflow_fun(i + 1, n) else i

This program does not terminate due to a possible overflow of i for n = 231 −1. However, our translation
would result in an LCTRS which uses unbounded integers and thus terminates. Currently, our use of the
Scala-to-LCTRS translation is to prove termination of programs after having Stainless check for safety
errors such as integer overflows and division by zero. In our overflow_fun example, Stainless will report
addition overflow in this program, and the analysis pipeline never runs the termination check. Similarly,
safety errors can occur in binary operations (Section 4.3). Stainless can detect such errors in an earlier
phase prior to termination checks, omitting the need for LCTRS translation and termination checks.

LCTRSs provide more generality, both in theory and in practice: for example, not only do LCTRSs
support bounded integers out of the box, but there are also dedicated termination proving techniques for
such bounded integers [18]. A natural next step would be to export bounded Scala integers to bounded
LCTRS integers.

Lazy Evaluation Our translation only supports a subset of Scala defined in Figure 1. Other advanced
Scala features, such as lazy vals, are out of the scope of our work. In future work, we could adapt the
approach used for proving termination of Haskell programs via term rewriting [8]. This approach uses
a form of abstract interpretation [3] with the Haskell evaluation strategy to obtain rewrite rules whose
innermost termination implies termination of the original Haskell program with the Haskell evaluation
strategy. Alternatively/in addition, we could consider integrating lazy rewriting [26] into the target lan-
guage of our translation, although this integration would require setting up more complex termination
analysis infrastructure.

Higher-Order Functions Another limitation of the current state of our work is that our export does
not support higher-order functions, a common feature in functional programs. This matters even for
our benchmark set from a restricted application domain: recall that our translation was unable to han-
dle the sigma benchmark. However, in the meantime LCTRSs have been extended with higher-order
functions [10, 11] to a formalism called Logically Constrained Simply-typed Term Rewriting Systems
(LCSTRSs), motivated by translation-based termination analysis for functional programs (such as the
present work). What is missing in the above work is support for techniques to simplify LCSTRSs with
many rules. Very recent work [5] can help us overcome this limitation: in contrast to the earlier papers
on LCSTRSs, this paper targets innermost and call-by-value termination rather than termination with
regard to arbitrary rewrite strategies. This makes it possible to “chain” consecutive function calls, which
makes systems much more amenable to automated termination analysis. As this addresses the main ad-
vantage of ITRSs, we plan to target LCSTRSs with Cora [16] as termination prover to benefit from their
additional generality. Thus, an explicit removal of higher-order functions as part of the export may not
be needed.

Modular Analysis A limitation of our export is that the LCTRS does not contain information which
function symbols are allowed to occur in a start term of a possible infinite rewrite sequence. As a result,
the termination prover analyzes termination for arbitrary start terms.

For Scala programs where a helper function would be non-terminating for some inputs on which
it can never be called by the entry-point function, the resulting LCTRS would still be non-terminating
from corresponding terms. This behavior is in line with current termination analysis in Stainless, which
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def main(x: BigInt, y: BigInt): BigInt =
require(x > y)
helper(x, y)

def helper(x: BigInt, y: BigInt): BigInt =
if x ≤ 0 then y − x
else if 2 ∗ x > y then x − y
else 1 + helper(x, y)

Figure 4: The main function invokes the non-terminating helper function under the condition x > y.

requires termination of all functions for all inputs.3

For example, the main function in Figure 4 invokes the helper function only when x > y holds. How-
ever, this information is not visible in the translation of the helper function. Because the helper function is
not terminating when considered in isolation (due to the recursive call helper(x, y)), the resulting LCTRS
is non-terminating.

Cora supports labeling symbols that should not be considered as possible start terms as “private” [10].
Adding such labels in our export would provide the needed information for a more powerful analysis.

Proof of Correctness Future work may include a mechanized proof of correctness of our translation,
including formal semantics of the supported Scala subset and of LCTRS and a proof of preservation of
termination and non-termination properties between the input and the generated output.

Propagation of information from the termination analysis to Scala Currently the only information
from the termination analysis tool that reaches the user is whether termination was proved or disproved,
or no output was found. This can be accompanied by a human-readable proof on rewrite level, but
this has the downside that the user of Stainless cannot be expected to be familiar with the intricacies of
termination analysis of term rewriting.

Future work will involve extracting information from the proof that can be presented to a Scala
programmer. From a termination proof, a termination measure for a Scala function could be extracted
and added as an annotation to the Scala function. From a non-termination proof, a non-terminating term
could be extracted and translated back to Scala level. Here it would be necessary to check whether this
non-terminating term would be reachable from a valid start location of the Scala function.

7 Conclusions

We have presented an approach for termination analysis of Scala programs via a translation to LCTRSs.
Our approach allows for an automated extraction of an LCTRS such that innermost termination of the
LCTRS implies termination of the Scala program. We have integrated our approach into the transforma-
tion pipeline in the Stainless program verifier. Our experiments on benchmarks from student program-
ming assignments indicate complementarity to other approaches, such as the existing measure inference
in Stainless or the measure transfer of manual measure annotations from related functions.

3In a system like Stainless, if the intention is to have a function that only expects certain inputs, then this should be reflected
in the parameter data types and function preconditions.

23



Proving Termination of Scala Programs by Constrained Term Rewriting

References

[1] Martin Avanzini, Ugo Dal Lago & Georg Moser (2015): Analysing the complexity of functional programs:
higher-order meets first-order. In: Proc. ICFP, pp. 152–164, doi:10.1145/2784731.2784753.
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Separation logic is an extension of Hoare logic, enabling reasoning about programs manipulating
heap memories. Al Ameen and Tatsuta proposed a proof system for partial correctness in separation
logic with recursive calls, establishing its soundness and relative completeness. Cyclic proof systems
are proof systems for inductive statements, where induction is represented by a cyclic structure in
proofs. In this work, we propose a cyclic proof system for partial correctness of separation logic
for programs with recursive calls. In this system, we show that one can prove the memory safety
of pointer-based programs with recursive calls using a cyclic-proof approach, and we also prove the
soundness and relative completeness of our cyclic proof system. Therefore, the provability of our
system is equivalent to that of Al Ameen and Tatsuta’s system.

1 Introduction

1.1 Background

Separation Logic [10] is an extension of Hoare logic [8] that enables reasoning about programs manipu-
lating heap memories. A program P is said to satisfy a partial correctness if, whenever the precondition
A holds and execution of P terminates, the resulting state satisfies the postcondition B. We denote this
partial correctness by a Hoare triple {A} P {B}. We say that program P satisfies total correctness when it
satisfies termination in addition to partial correctness. Separation logic allows reasoning about the heap
memory state by introducing the concept of a singleton heap x 7→ a, representing a heap portion consist-
ing of one memory cell whose address is x and that stores the value a, and the separating conjunction
A∗B, describing that A and B hold in disjoint portions of the heap. These features enable local reasoning
about memory states. Al Ameen and Tatsuta proposed a proof system for partial correctness in separa-
tion logic with recursive calls, establishing its soundness and relative completeness [1]. In this system,
Hoare triples are extended to contextual Hoare triples, allowing to assume specifications of procedures
that appear recursively in procedure bodies. This extension to contextual triples is based on the idea of
Oheimb [12].

Cyclic Proof Systems [7] are proof systems for inductive statements and fixed-point operators, and
they represent induction by allowing some leaves in the proof’s derivation tree to cycle back to internal
nodes. For the proof to be sound, it must satisfy a soundness condition called the global trace condition,
which is decidable [6]. Rowe and Brotherston [11] proposed a cyclic proof system for total correctness
of separation logic aimed at verifying the termination of programs with recursive calls. In this system,
inductive predicates are labeled, and the labels track the number of times to unfold the predicates. Every
cycle in a proof of this system must include an infinite descent concerning label valuations. Since predi-
cate unfoldings cannot occur infinitely often, the global trace condition guarantees program termination.
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Brotherston and Gorogiannis [5] proposed a framework for abducting safety and termination precondi-
tions for heap-manipulating while programs using a cyclic proof-based approach. Here, safety is the
property that, starting execution from a given state, the program never transitions into undesirable states
(e.g., memory errors), and termination is the property that, in addition to safety, the program eventually
halts. These correspond to partial correctness and total correctness when a postcondition is specified.
Brotherston et al. demonstrated the relative completeness of the cyclic proof system for total correctness
of separation logic by encoding the weakest preconditions [3].

1.2 Our contribution

In this work, we propose a cyclic proof system for partial correctness of separation logic for programs
with recursive calls and demonstrate its soundness and relative completeness. Following the approach of
Brotherston et al. [3], we divide the inference rules into Symbolic Execution Proof Rules and Logical
Proof Rules. Following Brotherston and Gorogiannis [5], we define the global trace condition for partial
correctness as follows: in any infinite path in a cyclic pre-proof, Symbolic Execution Proof Rules are ap-
plied infinitely many times. The Symbolic Execution Proof Rules correspond to the symbolic execution
of the first command of a program. For example, in the (READ) rule, where [E] denotes the content of
the memory cell whose address is the value of E,

⊢ {φ [x′/x]∧ x = E ′[x′/x]∗ (E 7→ E ′)[x′/x]}C {ψ}
⊢ {φ ∗E 7→ E ′} x := [E];C {ψ}

(x′ is fresh)
,

in which the precondition in the conclusion is transferred to the precondition of the assumption through
symbolic execution. For partial correctness, we consider finite execution sequences of programs; hence,
our global trace condition guarantees soundness.

Comparison with prior work is as follows:

• Brotherston and Gorogiannis [5] proposed a cyclic proof system for partial correctness (through a
global trace condition) but does not support postconditions or recursive calls. Our system includes
postconditions and recursive calls. Furthermore, we established the relative completeness of our
system.

• Brotherston et al. [3] proposed a cyclic proof system for total correctness without recursive calls
and proved its relative completeness. Our system focuses on partial correctness, supports recursive
calls, and establishes relative completeness via a different technique.

• Rowe and Brotherston [11] proposed a cyclic proof system for total correctness that includes re-
cursive calls, and its relative completeness has not been established. Our system differs in that it
targets partial correctness rather than total correctness.

In the proof of relative completeness, we transform proofs from Al Ameen and Tatsuta’s system into our
own. Therefore, since both systems handle the same class of assertion languages, the provability of our
system is equivalent to that of Al Ameen and Tatsuta’s system.

In our system, one can prove the memory safety of pointer-based programs with recursive calls using
a cyclic-proof approach.

The remainder of this paper is as follows. section 2 describes the syntax and semantics of our
programming and assertion languages. In section 3, we provide our system’s soundness condition and
present a proof example. In section 4, we prove the soundness of our system, and in section 5, we prove
its relative completeness, and we conclude in section 6.
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2 Programs and Separation Logic Assertions

In this section, we describe the language of our system. The language of our system conforms to the
language of Al Ameen and Tatsuta’s system [1]. The programs include recursive calls and heap manip-
ulating commands. We assume every variable is global, and neither local variable nor parameter do not
appear. We also assume that every function called within the program is accompanied by its definition.

2.1 Syntax and Semantics of Programs

2.1.1 Syntax of Programs

We use x,y, · · · for program variables. Var is the set of program variables. Programs consist of sequences
of procedures and one distinguished main procedure. A procedure is declared as Procedure p {C}
where p is a procedure name and C is a command.

The arithmetic expressions E and the boolean expressions B are defined as follows.
Definition 2.1 (Expressions).

E ::= x | 0 | 1 | nil | E +E | E ×E B ::= E = E | E < E | ¬B | B∧B

The symbol nil means null pointer. The boolean expressions are used as branching conditions.
Definition 2.2 (Commands). We define commands C as C ::= ε | c ;C, where single commands c are
defined as follows.

c ::= x:=E | x:=[E] | [E]:=E ′ | x:= cons(E,E ′) | dispose(E)
| p | if B thenC1 elseC2 fi | while B doC1 odC

For commands C1 and C2, we define the composition C1 #C2 by ε #C2 =C2 and (c ;C1) #C2 = c ;(C1 #C2).
c denotes an atomic command, a branching command, or a looping command. The atomic commands

consist of an assignment (x := E), a dereference (x := [E]), a mutation ([E] := E ′), a memory allocation
(x := cons(E,E ′)), a memory deallocation (dispose(E)), and a procedure call (p). We define fv(C) as
the set of variables that occur in C.
Definition 2.3 (Programs). A program P is defined as P ::= ⟨(Procedure pi {Ci})i=1,...,n,C⟩, where C is
a command of the main procedure. For the programs P, we define body(pi) =Ci and always assume for
any p called in P, ∃i.p = pi.

We often omit the procedure declarations (Procedure pi {Ci})i=1,...,n when they are clear and only
write the main procedure C to denote a program. We define eproc(C) as the set of procedures that may
be hereditarily called in the execution of C as follows.

eproc0(C) = /0

eproci+1(C) = eproci(C)∪{p | procedures called in the execution of procedures in eproci(C)}

eproc(C) =
⋃

i

eproci(C)

We also write mod(C) for the set of all variables whose values are modified by C, that is, all of the
variables x such that C contains a command of the form x := · · · . We define emod(C) as the set of
variables that may be modified in the execution of C as follows.

emod(C) := mod(C)∪
⋃

p∈eproc(C)

mod(body(p)).
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2.1.2 Semantics of Programs

Let Val denote the set of values and Loc denote the set of locations available for use as the heap. We
assume that Val= N and Loc = N\{0}.

Definition 2.4 (Heap model). A heap model is represented by a pair (s,h), where s denotes a store and h
denotes a heap. A store s is a function s : Var → Val. A heap h is a finite partial function h : Loc → Val.
dom(h) denotes the domain of h. Stores denotes the set of all stores. Heaps denotes the set of all heaps.

For two heaps h1 and h2, if dom(h1)∩dom(h2)= /0, they are said to be disjoint. The heap composition
operation h1 ◦h2 between disjoint heaps h1 and h2 is defined as follows:

(h1 ◦h2)(l) =


h1(l) if l ∈ dom(h1)

h2(l) if l ∈ dom(h2)

undefined if l /∈ dom(h1)∪dom(h2).

Both the interpretation of arithmetic expressions E in s and the interpretation of boolean expressions
are given by the standard definitions.

Definition 2.5 (Operational semantics). We model a state as a configuration κ , which is either a triple
(C,s,h) or a distinguished configuration abort, where C is the remaining part of the program, s is a store,
and h is a heap. abort represents a memory error.

The operational semantics of the program are given by the small-step relation⇝ on configurations
defined by the rules in Figure 1. Here, an execution of n steps is denoted by n

⇝, and an execution of zero
or more steps is denoted by ∗

⇝. Furthermore, when a configuration κ satisfies κ
n
⇝ (ε,s,h) for some

n, we say (s,h) is a final state, and we write κ
n
⇝ (s,h). Assuming procedure declarations are provided

separately, they are omitted from the configuration.

2.2 Syntax and Semantics of Assertions

Our assertion language is defined as follows.

Definition 2.6 (Formulas).

φ ::= emp | E = E | E < E | E 7→ E | ¬φ | φ ∨φ | ∃xφ | φ ∗φ | φ −* φ

fv(φ) denotes the set of free variables in φ . E 7→ (E ′,E ′′) is an abbreviation for E 7→ E ′ ∗E+1 7→ E ′′.

Formulas denote concrete memory states’ properties via a satisfaction relation |=. We can use the
logical connectives ∧, →, and ∀ by combining ¬, ∨, and ∃ in a usual way.

Definition 2.7 (Satisfaction relation). The satisfaction relation |= between a heap model and a formula
is defined as shown in Figure 2.

Note that the boolean expressions are special forms of the formulas. It is easy to see that (s,h) |= B
does not depend on h, and we also write s |= B.

Definition 2.8 (Entailment). We write φ |= ψ for formulas φ ,ψ to mean (s,h) |= φ implies (s,h) |= ψ

for any (s,h).

In our proof system, we verify the partial correctness of programs by manipulating Hoare triples of
the form {φ}C {ψ}.

Definition 2.9 (Validity of Hoare triples). A Hoare triple {φ}C {ψ} is valid iff, for any (s,h) that satisfies
(s,h) |= φ , (C,s,h) ∗

⇝ abort does not hold and every final state (s′,h′) of (C,s,h) satisfies (s′,h′) |= ψ .
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(x:=E;C,s,h)⇝ (C,s[x 7→ JEKs],h)
JEKs ∈ dom(h)

(x:=[E];C,s,h)⇝ (C,s[x 7→ h(JEKs)],h)

JEKs ∈ dom(h)
([E]:=E ′;C,s,h)⇝ (C,s,h[JEKs 7→ JE ′Ks])

l, l +1 ∈ Loc\dom(h)
(x:= cons(E,E ′);C,s,h)⇝ (C,s[x 7→ l],h[l 7→ JEKs][(l +1) 7→ JE ′Ks])

JEKs ∈ dom(h)
(dispose(E);C,s,h)⇝ (C,s,h[JEKs 7→ ⊥])

s |= B
(if B thenC1 elseC2 fi;C,s,h)⇝ (C1 # C,s,h)

s��|=B
(if B thenC1 elseC2 fi;C,s,h)⇝ (C2 # C,s,h)

s |= B
(while B doC od;C′,s,h)⇝ (C # while B doC od;C′,s,h)

s��|=B
(while B doC od;C′,s,h)⇝ (C′,s,h)

body(p) =C′

(p;C,s,h)⇝ (C′ # C,s,h)
JEKs /∈ dom(h)

(x:=[E];C,s,h)⇝ abort
JEKs /∈ dom(h)

([E]:=E ′;C,s,h)⇝ abort

JEKs /∈ dom(h)
(dispose(E);C,s,h)⇝ abort

Figure 1: Operational semantics
(For a sequence s⃗, we denote the update of a function f by the partial function (⃗s 7→ t⃗) as f [⃗s 7→ t⃗]. The
updated value is undefined when we write f [⃗s 7→ ⊥].)

(s,h) |= emp ⇔ dom(h) = /0
(s,h) |= E1 = E2 ⇔ JE1Ks = JE2Ks
(s,h) |= E1 < E2 ⇔ JE1Ks < JE2Ks
(s,h) |= E1 7→ E2 ⇔ dom(h) = {JE1Ks} and h(JE1Ks) = JE2Ks

(s,h) |= ¬φ ⇔ (s,h)��|=φ

(s,h) |= φ1 ∨φ2 ⇔ (s,h) |= φ1 or (s,h) |= φ2
(s,h) |= ∃xφ ⇔ ∃m ∈Val.(s[x 7→ m],h) |= φ

(s,h) |= φ1 ∗φ2 ⇔ ∃h1,h2.h = h1 ◦h2 and (s,h1) |= φ1 and (s,h2) |= φ2
(s,h) |= φ1 −* φ2 ⇔ ∀h1,h2.h2 = h1 ◦h and (s,h1) |= φ1 implies (s,h2) |= φ2

Figure 2: Satisfaction relation
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(STOP)

⊢ {φ} ε {ψ}
(φ |= ψ)

(WRITE)
⊢ {φ ∗E 7→ E ′}C {ψ}

⊢ {φ ∗E 7→ E ′′} [E] := E ′;C {ψ}

(ASSIGN)
⊢ {φ [x′/x]∧ x = E[x′/x]}C {ψ}

⊢ {φ} x := E;C {ψ}
(x′ is fresh)

(READ)
⊢ {(φ ∗E 7→ E ′)[x′/x]∧ x = E ′[x′/x]}C {ψ}

⊢ {φ ∗E 7→ E ′} x := [E];C {ψ}
(x′ is fresh)

(DISPOSE)
⊢ {φ}C {ψ}

⊢ {φ ∗E 7→ E ′} dispose(E);C {ψ}

(CONS)
⊢ {φ [x′/x]∗ x 7→ (E,E ′)[x′/x]}C {ψ}

⊢ {φ} x := cons(E,E ′) ;C {ψ}
(x′ /∈ fv(φ ,E,E ′))

(IF)
⊢ {φ ∧B}C1 # C {ψ} ⊢ {φ ∧¬B}C2 # C {ψ}

⊢ {φ} if B then C1 else C2 fi;C {ψ}

(WHILE)
⊢ {φ ∧B}C′ # (while B do C′ od;C) {ψ} ⊢ {φ ∧¬B}C {ψ}

⊢ {φ} while B do C′ od;C {ψ}

(PROC)
⊢ {φ} body(p) # C {ψ}

⊢ {φ} p;C{ψ}

Figure 3: Symbolic Execution Proof Rules

(BOT)

⊢ {⊥}C {ψ}

(CONSEQ)
⊢ {χ}C {ξ}
⊢ {φ}C {ψ}

(φ |= χ,ξ |= ψ)

(FRAME)
⊢ {φ}C {ψ}

⊢ {φ ∗ξ}C {ψ ∗ξ}
(fv(ξ )∩ emod(C) = /0)

(SUBST)
⊢ {φ}C {ψ}

⊢ {φ [E/x]}C {ψ[E/x]}
(x /∈ fv(C),x ∈ fv(ψ)⇒ fv(E)∩ fv(C) = /0)

(SEQ)
⊢ {φ}C1 {χ} ⊢ {χ}C2 {ψ}

⊢ {φ}C1 # C2 {ψ}

(∃VAR)
⊢ {φ [y/x]}C {ψ}
⊢ {∃x.φ}C {ψ}

(y is fresh)

Figure 4: Logical Proof Rules

3 Cyclic Proof System

In this section, we define a cyclic proof system for partial correctness.

3.1 Definition of our cyclic proof system

The rules in our proof system are given in Figure 3 and Figure 4. The Symbolic Execution Rules in
Figure 3, viewed from conclusion to premise, are rules that execute a single command at the beginning
of the program and modify the precondition. The Logical rules in Figure 4 are the standard rules of
separation logic.

Since our system adopts a cyclic proof system, it is possible that in a finite derivation tree, non-axiom
leaves are closed by back-links to internal nodes. Therefore, cyclic proof systems require additional
conditions to ensure soundness called the global trace condition [7].

Definition 3.1 (Cyclic pre-proofs). A cyclic pre-proof is defined as a pair (P,F), consisting of a finite
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derivation tree P that has non-axiom leaves S1, . . . ,Sn and a mapping F that assigns internal nodes labels
with the same Hoare triples as Si for each 1 ≤ i ≤ n. We write Bud(P) to denote the set of non-axiom
leaves.

By identifying the back-linked nodes, a cyclic pre-proof can be regarded as representing an infinite
derivation tree as a cyclic graph. GP,F denotes the graph of a cyclic pre-proof (P,F). The nodes of
GP,F consist of pairs (S,r), where S is a Hoare triple appearing in the cyclic pre-proof (P,F) and r is
the name of the inference rule that concludes S. In the case S ∈ Bud(P), we set r = /0. GP,F has the
following two types of directed edges: a edge from (S,r) to (F(S),r′) for S ∈ Bud(P) and a edge from
(S,r) to (S′,r′) for S /∈ Bud(P) and each premise S′ of the rule instance r.

Cyclic pre-proofs are considered valid only if they satisfy the following soundness condition.

Definition 3.2 (Cyclic proof). A cyclic pre-proof (P,F) is a cyclic proof if every infinite path ννν in GP,F
contains infinitely many Symbolic Execution Proof Rules.

3.2 An example

We present an example of proof in our system. Consider the program, y := nil;Reverse, which reverses a
linear list. Here, the procedure Reverse is defined as follows.

Procedure Reverse {if (x ̸= nil) {z := [x]; [x] := y;y := x;x := z;Reverse} else ε fi }

Now, let us consider proving the Hoare triple {List α0(x)} y := nil;Reverse {List α
†
0 (y)}, where the List

predicate is defined inductively as follows.

List ε (x) := x = nil∧emp List (a ·α) (x) := x = a∧∃z.x 7→ z∗List α (z)

Here, α† denotes the sequence obtained by reversing the sequence of addresses α , ε denotes an empty
sequence, and a ·α denotes the concatenation of the singleton sequence with the sequence α .

We present the proof in Figure 5. The rules highlighted in red in Figure 5 are the Symbolic Execution
Proof Rules. Therefore, the global trace condition is satisfied. Symbolic Execution Proof Rules are
applied automatically to the program’s leading commands. In this example, the (CONSEQ) rule simply
transforms the assertion in the precondition according to the inductive definition of the predicate. Thus,
we can construct the cyclic proof almost automatically.

4 Soundness

In this section, we demonstrate the soundness of our cyclic proof system. As a preparation, we define
the notion of n-invalid for a non-negative integer n as follows.

Definition 4.1 (n-invalid). {φ} C {ψ} is said to be n-invalid if, there exists a model (s,h) such that
(s,h) |= φ and either there exists a final state (s′,h′) such that (C,s,h) n

⇝ (s′,h′) and (s′,h′)��|= ψ or
(C,s,h) n

⇝ abort holds.

To prove the soundness of our system, we first establish the following proposition.

Proposition 4.1 (Local soundness). For a rule instance r, let S be the conclusion of r, and assume that S
is n-invalid. Then, there exists a premise S′ of r that is m-invalid for some m ≤ n. In particular, if r is a
Symbolic Execution Rule, there exists a premise S′ of r that is m-invalid for some m < n.

From the above, we obtain the following.
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Figure 5: A Cyclic proof of reversing list program

Theorem 4.2 (Soundness). If ⊢ {φ}C {ψ} has a cyclic proof, then {φ}C {ψ} is valid.

Proof. We assume that ⊢ {φ} C {ψ} has a cyclic proof (P,F) and {φ} C {ψ} is invalid. Obviously,
{φ}C {ψ} is n-invalid for some n. By Proposition 4.1, there exists an infinite path ννν in the cyclic proof
(P,F) of invalid triples starting from {φ}C {ψ}. By the global trace condition, the Symbolic Execution
Proof Rules must be applied infinitely many times in ννν . Here, by Proposition 4.1, an infinite descent of
n occurs in the infinite path ννν , leading to a contradiction.

5 Relative Completeness

In this section, we demonstrate the relative completeness of our system by showing that proofs in Al
Ameen and Tatsuta’s separation logic system [1], whose relative completeness has already been estab-
lished, can be transformed into proofs in our system. In this system, Hoare triples are extended to
contextual Hoare triples. From now on, we will call this system Al Ameen’s system.

Due to space limitations, we omit the inference rules of Al Ameen’s system (see the original paper
for details [1]). When φ is provable in the context Γ by Al Ameen’s system, we write Γ ⊢A φ .

The commands of our language and those of Al Ameen’s system are slightly different. We define C∗

for a command in Al Ameen’s system as (C1;C2)
∗ =C∗

1 # C∗
2 . For Hoare triples, define ({φ}C {ψ})∗ as

{φ}C∗{ψ}.
In Al Ameen’s system, commands are interpreted by a denotational semantics JCK, which maps from

heap models to sets of heap models or abort. It is easy to see that their denotational semantics and our
operational semantics are equivalent in the following sense: κ ∈ JCK(s,h) iff (C∗,s,h) ∗

⇝ κ . Hence, the
validity of Hoare triples is equivalent in the two systems.
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Figure 6: Grafted proof tree P

To define the translation from Al Ameen’s proofs to our proofs, we slightly extend our proof system
with open assumptions.

Definition 5.1 (Cyclic proof with open assumptions). A cyclic pre-proof with open assumptions is de-
fined as a tuple (P,F,Γ) such that P is a derivation tree, F is a mapping, and Γ is a set of open
assumptions satisfying (1) each leaf γ of P is either an axiom, in Bud, or in Γ, and (2) the mapping
F assigns an internal node to each γ ∈ Bud such that γ and F(γ) are the same Hoare triples. A cyclic
pre-proof with open assumptions (P,F,Γ) is a cyclic proof with open assumptions if every infinite path
ννν in GP,F contains infinitely many Symbolic Execution Rules. When there exists a cyclic proof of φ

with open assumptions Γ, we write Γ ⊢S φ .

Theorem 5.1. For any proof of Γ ⊢A γ , there exists a proof of Γ∗ ⊢S γ∗ in our system. We show that each
rule in [1] can be proven by our system.

Proof. We proceed by induction on the rules. In the following, we present only the rule (RECURSION)
of Al Ameen’s system.

Γ∪{{φi} pi {ψi} | 1 ≤ i ≤ nproc} ⊢A {φ1} body(p1) {ψ1}
...

Γ∪{{φi} pi {ψi} | 1 ≤ i ≤ nproc} ⊢A {φnproc} body(pnproc) {ψnproc}
Γ ⊢A {φ j} p j {ψ j}

for 1 ≤ j ≤ nproc. Henceforth, we fix j in our considerations, and we show that Γ∗ ⊢S {φ j} p j; ε {ψ j}
holds. By the induction hypothesis and the rule (PROC), we have

Γ
∗∪{{φi} pi;ε {ψi} | 1 ≤ i ≤ nproc} ⊢S {φk} pk;ε {ψk}.

for 1 ≤ k ≤ nproc. Let (Pk,Fk,Γ
∗ ∪ {{φi} pi;ε {ψi} | 1 ≤ i ≤ nproc}) be its cyclic proof with open

assumptions.
To construct (P,F,Γ∗∪{{φi}pi;ε{ψi} | i = 1, . . . ,nproc}), we consider the following proof tree, as

shown in Figure 6, where GPi,Fi is grafted onto each open assumption {φi} pi;ε {ψi} of GP j,Fj . As in
Figure 6, P ′

j denotes the portion of the original P j to distinguish from the grafted tree. Let this tree be
P . Let F be a mapping extending

⋃
i Fi such that, for each open assumption {φi} pi;ε {ψi} assigns the

root node of Pi, that is, F(†i) = ‡i in Figure 6 for each i. In the case of mutually recursive procedures,
a single grafting step may not suffice: if not all assumptions in the context are used, one graft operation
will not bring in the corresponding subproofs. However, we can repeat this grafting as many times as
needed until the necessary assumption appears, and the entire process terminates after at most finitely
many iterations.
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We will show that the pre-proof satisfies the global trace condition. For an infinite path in the pre-
proof, if a tail of the path is within GPi,Fi for some i, it contains infinitely many Symbolic Execution
Proof Rules by the global trace condition for (Pi,Fi). Otherwise, the infinite path goes through the new
back-links between Pi’s infinitely many times. By the construction, the transitions after the new back-
links must be the rule (PROC), and hence, the path contains infinitely many Symbolic Execution Proof
Rules.

Theorem 5.2 (Relative Completeness). If {φ}C {ψ} is valid, ⊢S {φ}C {ψ} is provable.

Proof. If {φ} C {ψ} is valid, ⊢A {φ} C {ψ} is provable by the relative completeness of Al Ameen’s
system [1]. From Theorem 5.1, there exists a transformation of the proof of ⊢A {φ}C {ψ} into the proof
of ⊢S {φ}C∗ {ψ}, where C∗ =C holds for the command C in our language.

6 Conclusions and Future Work

In this paper, we have proposed a cyclic proof system for partial correctness of separation logic and
demonstrated its soundness and relative completeness. For the proof of the relative completeness, we
have shown a transformation from proofs in Al Ameen’s system [1], which has already been established
to be relatively complete, to proofs in our system.

Concurrent separation logic [2, 9] extends separation logic for concurrent programs. In concurrent
separation logic, it is possible to prove specifications when multiple threads operate concurrently. In
Brotherston’s system SLLP [4], the access rights that a thread holds over a specific region of shared mem-
ory are expressed in greater detail using fractional permissions. The first challenge is extending our
proposed cyclic proof system for separation logic by incorporating permission values to handle concur-
rent separation logic. All variables are global in our system, and local variables and function parameters
are absent. The second challenge is to extend our system by introducing local variables and function
parameters to accommodate a broader class of programs.
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A transformation of multithreaded programs without priorities into logically constrained term rewrite
systems (LCTRS, for short) has been proposed. In this paper, we extend it to prioritized threads by
introducing a descending list of priorities into terms representing configurations. As a case study, we
show a verification example in which a runtime-error verification method based on all-path reacha-
bility detects an assertion failure caused by the interrupt of a high-priority thread.

1 Introduction

Recently, approaches to program verification by means of logically constrained term rewrite systems
(LCTRSs, for short) [15] are well investigated [5, 21, 3, 19, 6, 7, 2, 17, 14]. LCTRSs are useful models
of not only functional but also imperative programs, which are evaluated sequentially. For instance,
equivalence checking by means of LCTRSs is useful to ensure the correctness of terminating functions
(cf. [5]). Since the reduction of rewrite systems is in general non-deterministic, rewrite systems are
reasonable models of concurrent programs. A transformation of sequential programs into LCTRSs [5,
6] has been extended to multithreaded programs1 without priorities [13, 14]. In addition, a method
for runtime-error verification by means of all-path reachability problem (APR problem, for short) of
LCTRSs has been developed [10, 9]. The method is expected to be applied to the verification of various
runtime errors.

Experience has shown that runtime errors caused by interrupts are very crucial for concurrent pro-
grams, and verification for such errors—detecting an execution with a runtime error, or proving non-
occurrence of runtime errors in any execution—is very important. To the best of our knowledge, there
is no transformation of prioritized multithreaded programs into constrained rewrite systems, and thus,
for the present, we cannot apply the verification method based on APR problems of LCTRSs to runtime
errors caused by interrupts.

In this paper, we extend the aforementioned transformation of multithreaded programs into LCTRSs
to prioritized threads by introducing a descending list of priorities into terms representing configurations
(Section 4). We deal with a restricted class of C programs with the Pthreads Library for prioritized
threads. Then, as a case study, we show a verification example in which the APR-based method detects
an assertion failure caused by the interrupt of a high-priority thread (Section 5). As a first step of
extending to priorities, we consider round-robin scheduling SCHED_RR of the Pthreads Library only,
where we consider arbitrary time periods so as to verify all possibles settings. Assertions which specify

*This work was partially supported by Grant-in-Aid for JSPS Fellows Grant Number JP24KJ1240 and JSPS KAKENHI
Grant Number.

1Although source programs in [13, 14] are called multiprocessing, they are actually multithreaded because processes can
share some global variables.
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assumptions to be satisfied in passing the assertions are often written in programs to be verified: If an
assertion is not satisfied, then the assertion failure happens as a runtime error. As runtime errors, we
mainly focus on assertion failures.

When considering interrupts, threads have priorities. A thread can be executed if its priority is the
highest among those of the currently runnable threads; otherwise, the thread waits for the termination
of other runnable threads with higher priorities. To control execution order based on priorities, we need
to keep track of the priorities of the currently runnable threads and know the highest one among the
priorities. To this end, we use a descending list of priorities of the currently runnable threads. The head
priority of the list indicates which priority is the highest at the moment. Thus, the descending list is
operated as a stack. The descending list performing as a stack is operated as follows:

• When a thread starts to be executed, for interruption, its priority is pushed to the list;

• a thread can be executed if its priority is greater than or equal to2 the head element of the stack;

• when a thread terminates successfully, for other threads with lower priorities, the head element of
the stack is popped.

Since there may be two or more runnable threads with the same priority, the descending list may have
duplicated priorities like multisets; if we do not allow any duplicated priorities and the head element is
popped for termination of a thread, then no other thread with the same priority can no longer be executed.
Since round-robin scheduling is considered, we do not have to keep process identifiers together with
priorities; for FIFO scheduling,3 we need a queue of process identifiers, i.e., a descending list of pairs
of priorities and identifiers. A thread can be executed if its priority is the highest, i.e., greater than or
equal to the head element of the descending list. When we start the execution of a thread, its constrained
rewrite rule pushes the priority to the descending list. When the thread terminates after the application
of a constrained rewrite rule, the priority which is located on the top of the list is popped by the rewrite
rule.

In [14], the use of lists for waiting queues of semaphores is not recommended so as to reduce the
number of generated constrained rewrite rules. This is because such queues need an operation recursively
represented by rewrite rules, which appends a process identifier to a queue as the last element by several
reduction steps. Such steps expand the search space in verifying non-existence of runtime errors. On the
other hand, we use lists for stacks of priorities in our transformed LCTRSs. Such use is not a downside
because the push and pop operations can be included in rewrite rules for the transition of configurations
such as cnfg(. . . , ls)→ cnfg(. . . , p::ls) [ϕ] and cnfg(. . . , p::ls)→ cnfg(. . . , ls) [ϕ], where ls is a variable
for a stack and p is an element pushed to or popped from the stack.

2 Preliminaries

In this section, we briefly recall LCTRSs [15, 5]. Familiarity with basic notions and notations on term
rewriting [1, 20] is assumed.

To define an LCTRS [15, 5] over an S-sorted signature Σ, we consider the following sorts, signatures,
mappings, and constants: Theory sorts in Stheory and term sorts in Sterm such that S = Stheory ⊎Sterm; a
theory signature Σtheory and a term signature Σterms such that Σ = Σtheory ∪Σterms and ι1, . . . , ιn, ι ∈ Stheory

2If the generated LCTRS performs correctly, then the priority coincides with the head element.
3A thread can be executed until its completion if there is no interruption. For successive execution of a thread without

interruption, we have to keep the thread identifier, together with priorities.
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for any symbol f : ι1 × ·· · × ιn → ι ∈ Σtheory; a mapping I that assigns to each theory sort ι a (non-
empty) set Aι , so-called the universe of ι (i.e., I(ι) = Aι ); a mapping J , so-called an interpretation
for Σtheory, that assigns to each function symbol f : ι1 ×·· ·× ιn ⇒ ι ∈ Σtheory a function fJ in I(ι1)×
·· ·×I(ιn) → I(ι) (i.e., J ( f ) = fJ ); a set Valι ⊆ Σtheory of value-constants a : ι for each theory sort
ι such that J gives a bijection from Valι to I(ι) (= Aι ). We denote

⋃
ι∈Stheory

Valι by Val. Note that
Val ⊆ Σtheory. For readability, we may not distinguish Valι and I(ι) (=Aι ), i.e., for each v ∈ Valι , v and
J (v) may be identified. We require that Σterms ∩Σtheory ⊆ Val. Symbols in Σtheory \Val are calculation
symbols, for which we may use infix notation. A term in T (Σtheory,V) is called a theory term, where V
is a (countably infinite) set of variables. We define the interpretation [[ · ]]J of ground theory terms as
[[ f (s1, . . . ,sn)]]J = J ( f )([[s1]]J , . . . , [[sn]]J ). Note that for every ground theory term s, there is a unique
value-constant c such that [[s]]J = [[c]]J .

We typically choose a theory signature Stheory such that Stheory ⊇ Score = {bool}, Valbool = {true,
false : bool}, Σtheory ⊇ Σcore = Valbool ∪{∧,∨,⇒,⇔ : bool×bool ⇒ bool, ¬ : bool ⇒ bool}∪{=ι , ̸=ι :
ι × ι ⇒ bool | ι ∈ Stheory}, I(bool) = {⊤,⊥}, and J interprets these symbols as expected: J (true) =⊤
and J (false) = ⊥. We omit the sort subscripts ι from =ι and ̸=ι when they are clear from the context.
A theory term with sort bool is called a constraint. A substitution γ which is a sort-preserving mapping
from T (Σ,V) to T (Σ,V) is said to respect a constraint φ if xγ ∈ Val for all x ∈ Var(φ) and [[φγ]]J =⊤,
where Var(φ) denotes the set of variables appearing in φ .

A constrained rewrite rule is a triple ℓ → r [ϕ] such that ℓ and r are terms of the same sort, ϕ is
a constraint, and ℓ is neither a theory term nor a variable. If ϕ = true, then we may write ℓ → r. We
define LVar(ℓ→ r [ϕ]) as Var(ϕ)∪ (Var(r) \Var(ℓ)), the set of logical variables in ℓ→ r [ϕ] which
are variables instantiated with values in rewriting terms. We say that a substitution γ respects ℓ→ r [ϕ] if
γ(x) ∈ Val for all x ∈LVar(ℓ→ r [ϕ]) and [[ϕγ]]J =⊤. Regarding the signature of R, we denote the set
{ f (x1, . . . ,xn)→ y [y = f (x1, . . . ,xn)] | f ∈ Σtheory \Val, x1, . . . ,xn,y ∈ V are pairwise distinct} by Rcalc.
The elements of Rcalc are calculation rules and we often deal with them as constrained rewrite rules even
though their left-hand sides are theory terms. The rewrite relation →R is a binary relation over terms,
defined as follows: For a term s, s[ℓγ]p →R s[rγ]p if and only if ℓ → r [ϕ] ∈ R∪Rcalc and γ respects
ℓ → r [ϕ]. A reduction step with Rcalc is called a calculation. A logically constrained term rewrite
system (LCTRS, for short) is defined as an abstract reduction system (T (Σ,V),→R), simply denoted by
R, where R is a set of constrained rewrite rules. An LCTRS is usually given by supplying Σ, R, and an
informal description of I and J if these are not clear from the context.

The standard integer signature Σint is Σcore ∪{+,−,×,exp,div,mod : int× int ⇒ int}∪{≥,> : int×
int ⇒ bool}∪Valint where Stheory ⊇ {int,bool}, Valint = {n | n ∈ Z}, I(int) = Z, and J (n) = n for any
n ∈ Z—we use n (in sans-serif font) as the value-constant for n ∈ Z (in math font). We define J in a
natural way. An LCTRS over a signature Σ ⊇ Σint with Σtheory = Σint is called an integer LCTRS.

Example 2.1 The following integer LCTRS calculates the factorial function over Z iteratively:

R1 =


fact(x)→ subfact(x,1)

subfact(x,y)→ y [x ≤ 0]
subfact(x,y)→ subfact(x−1,x× y) [x > 0]


The term fact(3) is reduced by R1 to 6: fact(3) →R1 subfact(3,1) →R1 subfact(3− 1,3× 1) →R1

subfact(2,3× 1) →R1 subfact(2− 1,2× (3× 1)) →R1 subfact(1,2× (3× 1)) →R1 subfact(1− 1,1×
(2× (3×1)))→R1 subfact(0,1× (2× (3×1)))→R1 1× (2× (3×1))→∗

R1
6.

41



On Transforming Prioritized Multithreaded Programs into LCTRSs

3 Source Programs

For brevity, as an abstract source language, we use a concurrent version of SIMP+ [6]4 with priority of
threads, programs of which are written in the C language with the Pthreads Library. To be more precise,
the following are allowed in our source programs.

Declarations A program consists of declarations of functions and global variables and has a main func-
tion that only creates a fixed number of threads having individual priorities. To compile it as a C
program, it includes pthread.h, unistd.h, and assert.h, while for the space issue, we omit
the #include sentences from programs in this paper. We include unistd.h to use usleep for
experiments, and include assert.h to use assertions for verification.

Types Types int for integers, pthread_t for threads, pthread_attr_t for attributes of threads, and
struct sched_param for specifying scheduling parameters are allowed. As a first step, for
brevity, we use pthread_attr_t only to specify a scheduling parameter. For the sake of sim-
plicity and readability, unlike the C language, the range of variables with type int is not the 32-bit
integers but the integers. This restriction is not essential for the result in this paper.

Variables Both global and local variables are used with initialized declarations, while global vari-
ables are allowed for int only. Local variables with types pthread_t, pthread_attr_t, and
struct sched_param are only used in the main function to create threads.

Functions The main function is defined as the form int main() { . . . return 0; }. Other functions
are defined as either of the following forms:

• void f(void * x) { . . . }
• int f(int x1, . . . , int xn) { . . . }

Since we follow the specification of the Pthreads Library, any function f called in creating threads
takes an argument with type void *. The main function in this paper just creates some threads,
waits for the termination of the created threads, and then finishes its execution.

Statements for threads with priority attributes We only use the following five statements for threads
with priority attributes in some restricted way:

• pthread_create(&t, e, f, NULL); for creating threads, where t is a variable with type
pthread_t and e is either NULL or &a with a a variable with type pthread_attr_t.

• pthread_attr_init(&a); for initializing attributes, where a is a variable with type
pthread_attr_t,

• p.sched_priority = n; for setting a priority to a scheduling parameter, where p is a
variable with type struct sched_param and n is a positive integer,

• pthread_attr_setschedpolicy(&a, SCHED_RR); for setting the round-robin scheduling
policy SCHED_RR to a thread attribute, where a is a variable with type pthread_attr_t, and

• pthread_attr_setschedparam(&a, &p); for setting a scheduling parameter to a thread
attribute, where a is a variable with type pthread_attr_t and p is a variable with type
struct sched_param.

The above statements are used in the main function only.

Statements In addition to assignments and if, while, return statements over int expressions, func-
tion calls for user-defined ones and usleep are allowed.

4SIMP+ is an extension of a small imperative language, so-called SIMP [4], to global variables and function calls.
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Expressions Integer expressions with no side effects are used.

Assertions Assertions of the form assert(e); are used for verification.

Example 3.1 Program 1 is a program with medium and high-priority interrupts. The main function
creates three threads: task function waits until the value of init becomes 1 and loads the value of
the shared variable x; mid function interrupts task, and assigns 99 to x and 1 to init; high function
interrupts task or mid and increments x by 1. The function task is expected to load the value written
by the medium-priority interrupt. However, depending on the timing of the interrupt, the value may be
incremented by the high-priority interrupt.

4 Transforming Source Programs into LCTRSs

Introducing the representation of priorities into the transformation in [14], we transform our source
programs into LCTRSs, while we do not consider semaphores and their waiting queues and some minor
changes are introduced. The sorts of the generated LCTRSs are bool, int, config, thread, and state. The
fixed non-theory function symbols are the following:

• cnfg : thread×·· ·× thread× int×·· ·× int ⇒ config for configurations,

• t : state× int ⇒ thread for threads,

• none : thread for the non-existence of threads,

• return : thread for the terminating state of threads, and

• error : config for runtime errors.

The main function considered in this paper creates n threads and ends with the termination of the
created threads. Since there is a root thread executing the main function, the number of the arguments of
cnfg is n+m+2: n+1 threads, m global variables, and a stack of priorities. Rewrite rules for creating
threads are similar to those for creating processes in [14].

A thread T is represented as a term t(st, p) where the subterm st is a state of T and p is its priority.
The priorities of the currently runnable threads are maintained in a descending list that is operated as a
stack. Configurations of the executing process with n threads and m global variables are represented by
terms of the following form:

cnfg(t(st1, p1), . . . , t(stn, pn),v1, . . . ,vm,stck)

where sti is either a term representing the entry point or a state of the i-th thread, v j is a value stored
for the j-th global variable, and stck is a descending list for priorities of executing threads. A thread can
be executed if its priority is greater than or equal to the head value of the descending list. For lists in
LCTRSs, we use the list constructors :: and nil.

Following the approach in [14], we transform a statement of the function executed in the i-th thread
into constrained rewrite rules. Each constrained rewrite rule represents a single reduction step of exactly
one thread, having the following form:

cnfg(t1, . . . , ti−1, t(st, p), ti+1, . . . , tn,x1, . . . ,xm,s)→cnfg(t1, . . . , ti−1, t(st′, p), ti+1, . . . , tn,x′1, . . . ,x
′
m,s

′) [ϕ]

where t1, . . . , ti−1, p, ti+1, . . . , tn,x1, . . . ,xm are pairwise different variables, st and st′ are terms representing
states just before and after executing the statement or a function, respectively, s and s′ are terms represent-
ing stacks for priorities, ϕ is the conjunction of a guard constraint and a formula to update variables by
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Program 1: Program with medium and high priority interrupts
1 int x = 0;
2 int init = 0;
3
4 void* task(void* arg) {
5 while (init == 0) usleep(100);
6 int v = x;
7 assert(v == 99);
8 return NULL;
9 }

10
11 void* mid(void* arg) {
12 x = 99;
13 init = 1;
14 return NULL;
15 }
16
17 void* high(void* arg) {
18 x ++;
19 return NULL;
20 }
21
22 int main() {
23 pthread_t thread_task, thread_mid, thread_high;
24 pthread_attr_t attr_task, attr_mid, attr_high;
25 struct sched_param param_task, param_mid, param_high;
26
27 pthread_attr_init(&attr_task);
28 pthread_attr_init(&attr_mid);
29 pthread_attr_init(&attr_high);
30
31 param_task.sched_priority = 10;
32 param_mid.sched_priority = 20;
33 param_high.sched_priority = 30;
34
35 pthread_attr_setschedpolicy(&attr_task, SCHED_RR);
36 pthread_attr_setschedpolicy(&attr_mid, SCHED_RR);
37 pthread_attr_setschedpolicy(&attr_high, SCHED_RR);
38
39 pthread_attr_setschedparam(&attr_task, &param_task);
40 pthread_attr_setschedparam(&attr_mid, &param_mid);
41 pthread_attr_setschedparam(&attr_high, &param_high);
42
43 pthread_create(&thread_task, &attr_task, task, NULL);
44 pthread_create(&thread_mid, &attr_mid, mid, NULL);
45 pthread_create(&thread_high, &attr_high, high, NULL);
46
47 return 0;
48 }
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means of assignments in executing the statement, and x′1, . . . ,x
′
m are variables in {x1, . . . ,xm}∪Var(φ).

State terms st and st′ are rooted by auxiliary function symbols that represent which statements are exe-
cuted at the next step. Such symbols may have arguments that store values of local variables. Concrete
examples can be seen in Example 4.1.

In addition to the overview above, regarding descending lists of priorities, the entry point, interme-
diate statements, and return statements of the i-th thread are transformed into constrained rewrites rule
of the following forms, respectively:

cnfg(t1, . . . , ti−1, t(f , p), ti+1, . . . , tn,x1, . . . ,xm,hd::ls)
→ cnfg(t1, . . . , ti−1,t(st′, p),ti+1, . . . , tn,x1, . . . ,xm, p::hd::ls) [ p ≥ hd ]

cnfg(t1, . . . , ti−1, t(st, p), ti+1, . . . , tn,x1, . . . ,xm,hd::ls)
→ cnfg(t1, . . . , ti−1,t(st′, p),ti+1, . . . , tn,x1, . . . ,x j−1,x′j,x j+1, . . . ,xm,hd::ls ) [ p ≥ hd∧ϕ ]

cnfg(t1, . . . , ti−1, t(st, p), ti+1, . . . , tn,x1, . . . ,xm,hd::ls)
→ cnfg(t1, . . . , ti−1,return, ti+1, . . . , tn,x1, . . . ,xm, ls ) [ p ≥ hd∧ϕ ]

where f is a function executed by the i-th thread and t1, . . . , ti−1, p, ti+1, . . . , tn,x1, . . . ,xm,x′j,hd, ls are
pairwise different variables. Note that each constrained rewrite rule represents a behavior of exactly
one thread. For an assert statement of the form assert(ϕ);, we generate the following rule for the
violation of the assertion ϕ:

cnfg(t1, . . . , ti−1, t(st, p), ti+1, . . . , tn,x1, . . . ,xm,hd::ls)→ error [ p ≥ hd∧¬ϕ ]

Since the reduction of LCTRSs is non-deterministic, we do not represent the execution of calling usleep,
i.e., we consider usleep(e); the skip statement.

The initial configuration is represented by the following term:

cnfg(t(main,p0),none, . . . ,none,v1, . . . ,vm,p0 :: 0 :: nil)

where p0 is a priority of the main function—a positive integer which is larger than any priority specified
in the program—and v j is the initial value of the j-th global variable. Since the main function determin-
istically performs to create a fixed number of threads, to, e.g., reduce the search space of verification, we
may omit the execution of the main function in the transformed LCTRS. In such a case, we represent the
initial configuration by the following term:

cnfg(t( f1, p1), . . . , t( fn, pn),v1, . . . ,vm,0 :: nil)

where fi is a function executed by the i-th thread, pi is a priority of the i-th thread, and v j is the initial
value of the j-th global variable. Descending lists of configuration terms always include a dummy
priority 0, and thus the initial configuration above has 0::nil as the last argument. Due to this dummy
priority, we do not have to generate any rewrite rule for the case where the last argument of cnfg is nil.
This enables us to reduce the number of generated rules.

Example 4.1 Let us consider Program 1 again. The main function creates three threads and ends with
the termination of the created threads. For the page limitation, the execution of the main function is
omitted in the transformed LCTRS, i.e., the execution of main is not represented by any constrained
rewrite rule. Thus, cnfg has six arguments: three threads, two global variables, and a stack of priorities.
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For a thread executing task, a state just before executing a statement on Line 7 is represented by a
term of the form task7(n); On Line 6, the local variable v is declared with the initial value stored in the
global variable x. Program 1 is transformed into the following LCTRS:

R2=



cnfg(t(task,p), t2, t3,x, i,hd::ls)→cnfg(t(task5,p), t2, t3,x, i,p::hd::ls) [p ≥ hd ]
cnfg(t(task5,p), t2, t3,x, i,hd::ls)→cnfg(t(task5,p), t2, t3,x, i,hd::ls) [p ≥ hd∧ i = 0 ]
cnfg(t(task5,p), t2, t3,x, i,hd::ls)→cnfg(t(task6,p), t2, t3,x, i,hd::ls) [p ≥ hd∧ i ̸= 0 ]
cnfg(t(task6,p), t2, t3,x, i,hd::ls)→cnfg(t(task7(v),p), t2, t3,x, i,hd::ls) [p ≥ hd∧ v = x ]

cnfg(t(task7(v),p), t2, t3,x, i,hd::ls)→cnfg(return, t2, t3,x, i, ls) [p ≥ hd∧ v = 99 ]
cnfg(t(task7(v),p), t2, t3,x, i,hd::ls)→error [p ≥ hd∧ v ̸= 99 ]

cnfg(t1, t(mid,p), t3,x, i,hd::ls)→cnfg(t1, t(mid12,p), t3,x, i,p::hd::ls) [p ≥ hd ]
cnfg(t1, t(mid12,p), t3,x, i,hd::ls)→cnfg(t1, t(mid13,p), t3,x′, i,hd::ls) [p ≥ hd∧ x′ = 99 ]
cnfg(t1, t(mid13,p), t3,x, i,hd::ls)→cnfg(t1, t(mid14,p), t3,x, i′,hd::ls) [p ≥ hd∧ i′ = one]
cnfg(t1, t(mid14,p), t3,x, i,hd::ls)→cnfg(t1, return, t3,x, i, ls) [p ≥ hd ]

cnfg(t1, t2, t(high,p),x, i,hd::ls)→cnfg(t1, t2, t(high18,p),x, i,p::hd::ls) [p ≥ hd ]
cnfg(t1, t2, t(high18,p),x, i,hd::ls)→cnfg(t1, t2, t(high19,p),x′, i,hd::ls) [p ≥ hd∧ x′=x+1]
cnfg(t1, t2, t(high19,p),x, i,hd::ls)→cnfg(t1, t2, return,x, i, ls) [p ≥ hd ]


where a variable i stands for the global variable init. The initial configuration is represented by the
following term:

cnfg(t(task,10), t(mid,20), t(high,30),0,0,0::nil)

5 Verification of Safety Properties by All-Path Reachability

As an application of our transformed LCTRSs, we investigate all-path reachability problems (APR prob-
lem, for short) for the verification of runtime-errors [8, 10].

A constrained term is a pair ⟨t | φ⟩ of a term t and a constraint φ , which can be considered the set of
all instances of t w.r.t. substitutions that respect φ : {tγ | γ respects φ}. An APR problem of an LCTRS R
is a pair ⟨s | φ⟩ ⇒ ⟨t | ψ⟩ of constrained terms ⟨s | φ⟩,⟨t | ψ⟩ for state sets. As in [10, 9, 14], we consider
constant-directed APR problems of the form ⟨s | φ⟩ ⇒ c such that c is an irreducible constant. An APR
problem ⟨s | φ⟩ ⇒ c is demonically valid w.r.t. R if every finite execution path—a reduction sequence
starting with a term in ⟨s | φ⟩ and ending with a terminating state (i.e., a normal form)—includes c.
Note that execution paths are reduction sequences of unconstrained terms, and constrained terms are
used just to represent sets of terms. Note also that a usual reachability problem from a set P of terms
to a set Q of terms is whether each term in P reaches a term in Q, i.e., the problem is valid if for each
term in P, there exists a reduction sequence starting with the term and ending with a term in Q. A proof
system for APR problems of LCTRSs, DCC, and its weakened but easily-implementable variant cDCC
for constant-directed APR problems have been proposed in [3, 8, 9, 10, 12]. We have implemented
the variant proof system cDCC in a prototype of Crisys2,5 an equivalence verification system based on
constrained rewriting induction for LCTRSs [16, 5]. The implementation attempts to prove and disprove
a given APR problem by constructing a proof tree via breadth-first search.

The assertion failure verification for Program 1—whether there exists an execution violating the
assertion assert(v == 99); on Line 7—is reduced to the following APR problem of the LCTRS R∀

2

5https://www.trs.css.i.nagoya-u.ac.jp/crisys/rp2024/
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such that R∀
2 =R2 ∪{cnfg(t1, t2, t3,x, i, ls)→ success}:

⟨cnfg(t(task,10), t(mid,20), t(high,30),0,0,0::nil) | true⟩ ⇒ success

Since the non-existence of assertion failures is a safety property, as for race condition in [10], the above
APR problem is demonically valid if and only if there is no execution path where the assertion on Line 7
is violated.

Regarding the initial term ⟨cnfg(t(task,10), t(mid,20), t(high,30),0,0,0::nil) | true⟩, each thread
can be executed first, and no interrupt happens until a thread with a higher priority starts to be executed.
For this observation, this APR problem is not demonically valid: There exists at least one execution path
with an assertion failure. Using the tool Crisys2, we succeeded in disproving the above APR problem for
R∀

2 , which was conducted within a 3,600s timeout on a machine running MacOS 15.4.1 on Apple M2 8
cores with 24GB memory; Z3 (ver. 4.13.3) [18] was used as an external SMT solver. The APR problem
for R∀

2 was expectedly disproved by Crisys2 in 3.867s.
In verifying assertion failures by means of APR problems, when a source program includes exactly

one assertion that is executed at most once in any execution, we do not have to take care of the execution
after successfully passing the assertion. Viewed in this light, we can replace the right-hand side of the
rule for the assertion by success. For example, the assert statement on Line 7 of Program 1 is executed
at most once, and thus R2 can be modified to the following one:

R3=



cnfg(t(task,p), t2, t3,x, i,hd::ls)→cnfg(t(task5,p), t2, t3,x, i,p::hd::ls) [p ≥ hd ]
cnfg(t(task5,p), t2, t3,x, i,hd::ls)→cnfg(t(task5,p), t2, t3,x, i,hd::ls) [p ≥ hd∧ i = 0 ]
cnfg(t(task5,p), t2, t3,x, i,hd::ls)→cnfg(t(task6,p), t2, t3,x, i,hd::ls) [p ≥ hd∧ i ̸= 0 ]
cnfg(t(task6,p), t2, t3,x, i,hd::ls)→cnfg(t(task7(v),p), t2, t3,x, i,hd::ls) [p ≥ hd∧ v = x ]

cnfg(t(task7(v),p), t2, t3,x, i,hd::ls)→success [p ≥ hd∧ v = 99]
cnfg(t(task7(v),p), t2, t3,x, i,hd::ls)→error [p ≥ hd∧ v ̸= 99]

...


We can expect a more efficient verification by means of the LCTRS R∀

3 obtained by adding the rule
cnfg(t1, t2, t3,x, i, ls) → success to the above LCTRS: R∀

3 = R3 ∪{cnfg(t1, t2, t3,x, i, ls) → success}. In
fact, using R∀

3 , Crisys2 succeeded in proving the aforementioned APR problem in 3.541s. The efficiency
was not improved very much by the modification above. This is because the process (dis)proving APR
problems proceeds by breadth-first search and ends immediately at the detection of error.

To examine the modification above, changing the priorities of the three threads in Program 1, we
further made experiments:

⟨cnfg(t(task,pr1), t(mid,pr2), t(high,pr3),0,0,0::nil) | true⟩ ⇒ success

Table 1 shows the detail of the experiments: Columns 1 to 3 indicate the values of pr1,pr2,pr3, respec-
tively; Column 4 shows which LCTRS is used; Columns 5 to 7 show results, running times, and heights
of proof trees, respectively, where “YES”and “NO” mean that the APR problem is demonically valid
and not demonically valid w.r.t. the given LCTRS, respectively; Columns 8 to 12 show the numbers
of applying a rule for case splitting, generated subgoals, applying unification, applying matching, and
solving SMT problems by the external SMT solver. In applying the rule for case splitting to a con-
strained term ⟨s | φ⟩ of an APR problem ⟨s | φ⟩ ⇒ c at a non-variable position p of s, for each rewrite
rule ℓ→ r [ϕ] ∈ R, we first apply syntactic unification to s and ℓ; if they are unifiable with a most gen-
eral unifier γ , then we check the satisfiability of the constraint φγ ∧ϕγ; afterwords, we obtain a new
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Table 1: Experimental results of the assertion failure verification for R∀
2 and R∀

3
pr1 pr2 pr3 LCTRS Result Time (s) Ht. #der #Goals #Unif. #Match. #SMT
10 20 30 R∀

2 NO 3.867 11 78 173 854 3,072 414
R∀

3 NO 3.541 11 72 170 812 2,830 391
10 10 10 R∀

2 NO 5.943 9 184 221 1,050 6,093 988
R∀

3 NO 5.444 9 173 216 1,008 5,588 947
10 10 20 R∀

2 NO 5.596 10 116 205 1,008 4,540 622
R∀

3 NO 4.786 10 106 197 938 3,995 585
10 20 10 R∀

2 NO 3.558 10 92 168 826 3,044 498
R∀

3 NO 3.315 10 86 166 798 2,849 475
10 20 20 R∀

2 NO 4.631 11 104 192 938 3,769 564
R∀

3 NO 4.170 11 98 189 896 3,508 541
10 30 20 R∀

2 NO 3.581 11 74 168 826 2,868 392
R∀

3 NO 3.201 11 68 165 784 2,632 369
20 10 10 R∀

2 NO 5.218 9 112 210 994 4,715 587
R∀

3 NO 4.759 9 102 205 952 4,376 549
20 10 20 R∀

2 NO 4.501 9 122 193 924 4,320 596
R∀

3 NO 4.083 9 113 188 882 3,959 564
20 10 30 R∀

2 NO 5.573 10 98 205 1,008 4,335 524
R∀

3 NO 4.774 10 88 197 938 3,828 487
20 20 10 R∀

2 NO 4.674 10 115 193 938 4,128 562
R∀

3 NO 3.966 10 103 185 868 3,635 513
20 30 10 R∀

2 NO 3.165 10 72 161 784 2,686 369
R∀

3 NO 2.936 10 67 159 756 2,525 349
30 20 10 R∀

2 NO 4.661 10 91 193 938 3,889 450
R∀

3 NO 3.941 10 79 185 868 3,430 401

APR problem ⟨s[rγ]p | φγ ∧ϕγ⟩ ⇒ c as a subgoal. In applying a rule for circularity to an APR problem
⟨s | φ⟩ ⇒ c,6 we try to find an APR problem ⟨s′ | φ ′⟩ ⇒ c that has already been applied the rule for case
splitting: We first apply matching to s′ and s; if s′ matches s with a matching substitution θ , then we
check the equivalence of φ and φ ′θ by solving the SMT problem ¬(φ ⇔ φ ′θ); if the SMT problem is
unsatisfiable (i.e., φ and φ ′θ are equivalent), then we remove the APR problem ⟨s | φ⟩⇒ c. The details of
solving can be seen in [10, 11]. The numbers of applying unification, matching, and SMT solving affect
the efficiency of solving APR problems, and both the number of rewrite rules in the given LCTRS and
the height of the resulting proof tree are relevant to the numbers of the applications. For all combinations
of priorities, the expected results are “NO” because any thread can be executed first despite the priorities
and there exists at least one execution path with an assertion failure. For all combinations of priorities,
the modification improved the efficiency.

To get the result “YES”, let us consider the case where the tasks task and mid have the high-priority
30 and the task task is executed before others. Note that high no longer interrupts the other two tasks.
This case is represented by the following APR problem:

⟨cnfg(t(task5,30), t(mid,30), t(high,10),0,0,30::0::nil) | true⟩ ⇒ success (1)

6The rule for circularity plays a role of the application of induction hypotheses to subgoals (see [3, 10] for detail).
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Table 2: Experimental results of the assertion failure verification w.r.t. the APR problem (1).
pr1 pr2 pr3 LCTRS Result Time (s) Ht. #der #Goals #Unif. #Match. #SMT
30 30 10 R∀

2 YES 0.314 11 20 38 196 315 86
R∀

3 YES 0.187 7 14 32 126 186 59

Note that to represent that task has already been executed, the stack in the above configuration has the
stack that already has 30 as its head element. In any execution path of R∀

3 , the task high is always
executed after terminating the other two, and thus the assertion is no longer violated. Table 2 shows the
detail of the experiments. The result of solving the APR problem is “YES” which is an expected one. In
proving the above APR problem for R∀

2 and R∀
3 , the modification made proof trees smaller, improving the

efficiency significantly. This is because for demonically valid APR problems, all reachable constrained
terms are taken into account to prove the validity, and thus the modification significantly reduces the
search space.

6 Conclusion

In this paper, we extended the transformation of multithreaded programs into LCTRSs to prioritized
threads by introducing a descending list of priorities into terms representing configurations. Then, we
showed a verification example in which the APR-based method detects an assertion failure caused by the
interrupt of a high-priority thread. We will formulate the extended transformation to prove its correctness.
In addition, we will implement the extended transformation and make an empirical evaluation using
several examples. A further future direction is to extend the transformation to other constructs and
scheduling strategies (e.g., SCHED_FIFO) for multithreading.
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alence proofs using LCTRSs. Journal of Logical and Algebraic Methods in Programming 135, pp. 1–22,
doi:10.1016/j.jlamp.2023.100894.
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The functional language PCF with monomorphic typing, fixed-point operator, a let-construct for
sharing and call-by-need evaluation is extended with a binary probabilistic choice operator resulting
in probabilistic Lazy PCF. This language is further extended by permitting real-valued computable
probabilities for the choice operator. Equivalence of programs is a variant of contextual equivalence,
which compares programs based on their expected convergence in all program-contexts. As a tool,
distribution equivalence of closed programs of type nat is used, thus simplifying reasoning on equiv-
alence of programs. The main result shows that the extension of binary choice with probability 0.5 to
arbitrary real computable numbers in (0,1) is conservative. Programming examples in probabilistic
Lazy PCF are given to illustrate the reasoning, modifying and comparing the models of stochastic
experiments.

1 Introduction

Pure, lazy1 functional programming languages such as Haskell allow for a rigorous mathematical treat-
ment of programs and offer many valid program transformations. Implementations of these languages
use a call-by-need strategy for program execution, combining lazy evaluation with sharing to avoid the
repeated evaluation of sub-expressions (see e.g. [3, 2] for call-by-need lambda calculi).

Probabilistic programming (see e.g. [5]) extends programming languages by adding probabilistic
constructs so that they can describe stochastic models. Techniques from programming language seman-
tics can be used to improve reasoning about the programmed probabilistic experiments. Therefore, we
are interested in combining lazy evaluation and functional programming with probabilistic programming
exploiting call-by-need sharing to have exact control over the side-effects of probabilistic choice.

As a functional core language, we consider Plotkin’s language for “Programming Computable Func-
tions” [15], PCF for short. It is a typed functional programming language that extends the simply-typed
call-by-name lambda-calculus with natural numbers, branching and number operations, and a fixpoint
operator thereby establishing Turing-completeness.

In our programming language “probabilistic lazy PCF” (introduced in [21]), we extended a call-by-
need variant of simply-typed PCF with a fair coin toss s⊕ t that chooses between expressions s and t with
probability 0.5 for each expression. The language includes let-expressions to implement the sharing
required for the call-by-need operational semantics. The language has monomorphic types, which allow
functions and numbers to be distinguished, and allows flexible and type-safe programming.

Program evaluation is deterministic for all constructs except the binary infix operator ⊕, which can
choose the left or right argument provided it is a reduction position. Probabilities do not play a role
during a single execution, however, they do play a role in the analysis, and also if program execution is
used as Monte-Carlo simulations.

1With the term ‘lazy’ we identify call-by-need evaluation to weak head normal form, i.e. not to evaluate to (head) normal
form. This is a difference to [16, 13] where ‘Lazy PCF’ means adding a convergence tester for expressions where convergence
to numbers and functions is tested. However, our notion of convergence also tests for numbers and abstractions.

53

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/


Probabilistic Lazy PCF with Real-Valued Choice

In this probabilistic setting, call-by-value, call-by-name, and call-by-need evaluation are all different.
For instance, consider the function call f (1⊕ 2) (3⊕�), where f x y = x+ x and � is a diverging
expression. Then it may result in 2,3,4 using call-by-name evaluation, since 1⊕ 2 is copied for both
occurrences of x. Using call-by-need or call-by-value evaluation the possible values are 2 or 4, since
the result of 1⊕ 2 is shared for both occurrences of x. But, since call-by-value evaluation evaluates
all arguments before substituting them in the function body, there is a possibility for divergence (with
probability 0.5), while call-by-need (and call-by-name) evaluation cannot diverge in this example.

In this paper we consider an extension of the language by permitting the more general s
p
⊕ t instead

of s⊕ t for the probabilistic choice between s and t where p is the probability of choosing s and (1− p)
is the probability of choosing t. We allow p to be a computable real number in the open interval (0,1).
This expressivity permits to transform programs into equivalent ones requiring less coin tosses during
execution.

Our language permits to program and combine discrete probabilistic experiments in a way that
supports the analysis and correct transformation of programs or subprograms. For example, throw-
ing a dice with the six possible results 1,2,3,4,5 and 6 with probability 1/6 each is programmed by

1
1/6
⊕ (2

1/5
⊕ (3

1/4
⊕ (4

1/3
⊕ (5 ⊕ 6)))) where 1/6,1/5,1/4,1/3 are the probabilities represented as rational

numbers. Clearly this is more efficient than using fair coin throws. The non-deterministic execution
can be interpreted as the throwing of coins with the respective probabilities, and executing the whole
expression corresponds to throwing a dice with the usual distribution. Program evaluation corresponds
to a single experiment, and the experiment has a discrete probability distribution.

The intention behind using programs in this setting differs from that in usual deterministic pro-
gramming: the intention is to provide programs that represent probabilistic experiments, where a single
execution corresponds to a single probabilistic experiment. The gain using probabilistic lazy PCF is that
there is a rich set of program equivalences that offer approximate executions, and also correct transfor-
mations of experiments into other ones with the same distribution. Also analyses justified by program
semantics can be applied to reason on the probability distribution.

We call closed expressions that compute natural numbers stochastic programs. In [21] we proved that
for stochastic programs, distribution-equivalence is the same as contextual equivalence where the latter
tests for the expected convergence in all contexts. The notions can easily be transferred to the extended
calculus. Also the correspondence between distribution-equivalence and contextual equivalence could
be proved to hold in the extended language. The proof is straight-forward and thus we do not repeat it.

In this paper, we address the question, from the perspective of programming language semantics, of
whether the real-valued probabilistic operator is necessary, or whether it can be simulated in a smaller
language. We give a positive answer to this question, that is, we show that the extended language is
a conservative extension of the one that only permits probabilities 0.5. More concretely, we prove that
every stochastic program of the extended language is distribution-equivalent to a stochastic programs that
only uses fair coin tosses. The core idea of the encoding is well-known (see e.g. [4, Lemma 7.12] for a
similar encoding on probabilistic Turing machines): The computability of the real number is exploited by
computing the number bit-wise and throwing a fair coin for every bit. This is achieved using a recursive
program, resulting in a finite program. In addition to these technical results, we provide several examples
of probabilistic programs.

Related Work. Early investigations of probabilistic programming languages are [20, 8]. For example,
an operational semantics for a probabilistic lambda calculus has been defined in [12], including call-
by-name and call-by-value semantics, but no call-by-need semantics. Contextual equivalence is defined
analogously to our definition in [11, 6] for call-by-name and call-by-value calculi. However, both works
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differ from our work because in the probabilistic setting the semantics of call-by-name, call-by-value
and call-by-need are different. In [10] operational semantics, contextual equivalence, expressiveness
and termination of a typed call-by-value PCF are discussed. In terms of the classification in [10], our
calculus is a randomized lambda calculus (with sharing), since it performs a random evaluation of the
choice operator. This paper extends our work in [21]. The combination of probabilistic choice and
call-by-need evaluation was also analyzed in [18] where the analyzed language has recursive let, but no
numbers, and it is untyped.

Call-by-need lambda-calculi with non-determinism are related to calculi with probabilistic choice.
This combination was investigates in several works. For example, in [9] the contextual semantics of
an untyped calculus with non-recursive let is investigated. Lambda-calculi with recursive let and non-
deterministic operators can be found for instance in [14, 17].

Outline. In Section 2 we recall the language ProbPCFneed, its operational semantics, contextual
equivalence and distribution-equivalence. We illustrate the definitions with examples. In Section 3 we
extend the language to real-valued probabilities and provide the necessary adaptations of the definitions.
In Section 4 we show that the language extension can be encoded in the original calculus. After explain-
ing the encoding, we show that the encoding is distribution-equivalent. In Section 5 we conclude and
give some directions for future work. For space reasons, some proofs are given in a technical appendix.

2 The Language ProbPCFneed

We recall the syntax and semantics of ProbPCFneed from [21].

2.1 Syntax, Typing, and Operational Semantics of ProbPCFneed

In this section, we first introduce the syntax, followed by the operational semantics presented as a non-
deterministic reduction relation. We defer the treatment of probabilities to the next section to ease un-
derstanding.

Definition 2.1 (Syntax of Expressions and Types). Let Var be an infinite and countable set of variables.
We use x,y,z,xi,yi,zi for variables of Var. The syntax of expressions s,t,st ,ti ∈Expr and types τ,ρ,σ ∈Typ
is given by the following grammar:

s,t,si,ti ∈ Expr ∶∶= x ∣ λx.s ∣ (s t) ∣ (s⊕ t) ∣ let x = s in t ∣ if s then t1 else t2
∣ fix s ∣ pred s ∣ succ s ∣ n where n ∈N

τ,ρ,σ ∈ Typ ∶∶= nat ∣ τ → ρ

In an abstraction λx.s and in a let-expression let x = t in s the variable x is bound with scope s.
For an expression t, this induces the usual notion of free variables FV(t), bound variables BV(t), α-
renaming, and α-equivalence. If FV(t) =∅, the expression t is called closed or alternatively a program,
otherwise, the expression t is open. We write λx1,x2, . . . ,xn.s as abbreviation for λx1.λx2. . . . .λxn.s.

The construct s⊕ t is called a prob-expression. It will non-deterministically choose between s and
t. The operator fix is a fix-point operator. Naturals n ∈N = {0,1,2 . . .} are built in and succ computes
the successor of a number, while pred computes the predecessor with the exception of (pred 0) which
results in 0. Branching can be programmed using if s then t1 else t2 depending on the value of s,
where 0 is identified with true and any other natural with false.

The language ProbPCFneed is monomorphically typed. The type nat represents natural numbers,
and the type τ → ρ represents the type of a function from the type τ to the type ρ . The typing rules
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are standard, so we omit them and refer to [21] for their definition. We write s ∶ τ if the expression s is
well-typed with type τ . A context C is an expression with one hole [⋅] at expression position. We write
C[⋅σ ] ∶ τ for a context where any expression s of type σ can fill the hole, written C[s], such that C[s] ∶ τ .
A closed program of type nat is also called a stochastic program.

To define operational semantics in form of a reduction relation, called standard reduction, the three
context classes of A-, LR-, and R-contexts are used. The A-contexts are evaluation contexts as used in
the lambda-calculus with call-by-name evaluation (and thus the context hole is in function position of
applications). They are adapted to the constructs of the language where evaluation of the first argument of
fix, succ, pred, and if-then-else is enforced, since these operators are strict in their first argument.
The LR-contexts represent an environment consisting of nested let-expressions. The reduction contexts
R combine the LR- and A-contexts such that the hole position is in the in-expressions of let and also
in the right-hand side of a let-binding if it is needed – i.e., if the bound variable occurs in a reduction
context. Flat A-contexts A1 are A-contexts with hole-depth 1

A ∶∶= [⋅] ∣ (A s) ∣ if A then s else t ∣ pred A ∣ succ A ∣ fix A
A1 ∶∶= ([⋅] s) ∣ if [⋅] then s else t ∣ pred [⋅] ∣ succ [⋅] ∣ fix [⋅]

LR ∶∶= [⋅] ∣ let x = s in LR
R ∶∶= LR[A] ∣ LR[let x = A in R[x]]

A value in ProbPCFneed is a natural or an abstraction and a weak head normal form (WHNF) addi-
tionally allows an outer LR-context.

Values: v ∶∶= n ∣ λx.s WHNFs ∶ w ∶∶= LR[v]

For a WHNF of the form LR[n] with n ∈ N, we write val(LR[n]) to denote the number n (without the
LR-context).

The standard reduction of ProbPCFneed is a small-step reduction that respects sharing:

Definition 2.2 (Standard reduction). The standard reduction of ProbPCFneed is denoted by
srÐ→ and de-

fined by the following rules:

(sr,fix) R[fix λx.s]→ R[(λx.s) (fix λx.s)]
(sr, lbeta) R[(λx.s) t]→ R[let x = t in s]
(sr,succ) R[succ n]→ R[m] with m = n+1
(sr,pred) R[pred n]→ R[m] with m =max(0,n−1)
(sr, if -0) R[if 0 then s else t]→ R[s]
(sr, if -not-0) R[if n then s else t]→ R[t] if n /= 0
(sr,probl) R[s⊕ t]→ R[s]
(sr,probr) R[s⊕ t]→ R[t]
(sr, lflata) R[A1[let x = s in t]]→ R[let x = s in A1[t]]
(sr, llet) LR[let x = (let y = s in t) in R[x]]

→ LR[let y = s in let x = t in R[x]]
(sr,cp) LR[let x = v in R[x]]→ LR[let x = v in R[v]]

We apply standard reductions only to typed expressions. For a standard reduction step (sr-step, for

short) s
srÐ→ t, we sometimes write s

sr,labÐÐÐ→ t where (sr, lab) is the name of the applied reduction rule,
e.g. s

sr,cpÐÐ→ t. With
sr,+ÐÐ→ (

sr,∗ÐÐ→, resp.) we denote the transitive (reflexive-transitive, resp.) closure of
srÐ→.
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We give a short explanation of the reduction rules. The rule (sr, lbeta) is the call-by-need variant
of β -reduction: the argument of the application is shared by a new let-binding instead of substituting
the formal parameter of the abstraction. The copy-rule (sr,cp) performs needed substitutions, where
only values are copied. The rule (sr,fix) evaluates the fix-point operator. Computation of operations
on numbers is performed by (sr,succ) and (sr,pred), branching is evaluated by rules (sr, if -0) and
(sr, if -not-0). The rules (sr, lflata) and (sr, llet) rearrange let-bindings w.r.t. other let-bindings and
flat A-contexts. For instance, In (let x = u in (λy.s)) t the let is shifted over the application, before
the application is evaluated:

(let x = u in (λy.s) t) sr,lletÐÐÐ→ let x = u in ((λy.s) t) sr,lbetaÐÐÐ→ let x = u in (let y = t in s))

Rules (sr,probl) and (sr,probr) evaluate prob-expressions. Standard reduction is non-deterministic: all

rules are deterministic except for the rules
sr,problÐÐÐÐ→ and

sr,probrÐÐÐÐ→ where the left or the right argument of a
prob-expression is chosen as next expression.

Example 2.3. We show all reductions for expression t = (λx.if x then (x⊕2) else pred x) (0⊕1):
i) t

sr,lbetaÐÐÐ→ let x = (0⊕1) in
if x then (x⊕2) else pred x

sr,problÐÐÐ→ let x = 0 in

if x then (x⊕2) else pred x
sr,cpÐÐ→ let x = 0 in

if 0 then (x⊕2) else pred x
sr,if -0ÐÐÐ→ let x = 0 in (x⊕2)

sr,problÐÐÐ→ let x = 0 in x
sr,cpÐÐ→ let x = 0 in 0

ii) t
sr,lbetaÐÐÐ→ let x = (0⊕1) in

if x then (x⊕2) else pred x
sr,problÐÐÐ→ let x = 0 in

if x then (x⊕2) else pred x
sr,cpÐÐ→ let x = 0 in

if 0 then (x⊕2) else pred x
sr,if -0ÐÐÐ→ let x = 0 in (x⊕2)

sr,probrÐÐÐÐ→ let x = 0 in 2

iii) t
sr,lbetaÐÐÐ→ let x = (0⊕1) in if x then (x⊕2) else pred x

sr,probrÐÐÐÐ→ let x = 1 in if x then (x⊕2) else pred x
sr,cpÐÐ→ let x = 1 in if 1 then (x⊕2) else pred x

sr,if -not-0ÐÐÐÐÐ→ let x = 1 in pred x
sr,cpÐÐ→ let x = 1 in pred 1

sr,predÐÐÐ→ let x = 1 in 0

2.2 Expected Convergence and Contextual Equivalence

Our operational semantics is non-deterministic, but it does not track the probability of different evalua-
tions or results (in form of the WHNFs). We now introduce probabilities. A prob-sequence is a (finite)
sequence of pairs (probl, p) and (probr, p) where p ∈ (0,1).

For a reduction sequence s0
sr,a1ÐÐ→ ⋯ sr,anÐÐ→ sn, with PS(s0

sr,a1ÐÐ→ ⋯ sr,anÐÐ→ sn), we denote the prob-
sequence derived from a1, . . . ,an, where all labels ai are removed if ai /∈ {probl,probr} and the remaining
labels a j are replaced by (a j,0.5). Hence, in ProbPCFneed the probabilities p in prob-sequences are
always 0.5. However, in the next section this will be generalized.

For the reduction sequences in Example 2.3, the prob-sequences are i) (probl,0.5),(probl,0.5) ii)
(probr,0.5),(probr,0.5), and iii) (probr,0.5).
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An evaluation of s is a reduction sequence s
sr,a,∗ÐÐÐ→ t where t is a WHNF. Since the only source of

non-determinism is choosing between s or t in (s⊕ t) (i.e. all other reduction rules are deterministic and
the redex of every reduction is unique), an evaluation is uniquely determined by s and the prob-sequence
PS(s sr,a,∗ÐÐÐ→ t). With WHNF(s,S), we denote the WHNF t (up to α-equivalence) that is obtained for
expression s and with prob-sequence S, where WHNF(s,S) is undefined, if there is no evaluation for s
with prob-sequence S.

The probability P(S) of a prob-sequence S = (a1, p1), . . . ,(an, pn) is the product of the probabilities
pi, i.e. P(S) = ∏

(ai,pi)∈S
pi.

For an expression s, Eval(s) denotes the prob-sequences S of all evaluations of s and the expected
convergence EXCV(s) is the (perhaps infinite) sum of the probabilities of these evaluations. In addition,
for a natural n, the expected value convergence of s ∶ nat on value n, denoted EXVCV(s,n), only takes
into account evaluations resulting in expressions of the form LR[n] (where n is an integer). Thus:

EXCV(s) ∶= ∑
S∈Eval(s)

P(S) and EXVCV(s,n) ∶= ∑
S ∈ Eval(s),

val(WHNF(s,S)) = n

P(S)

Expected convergence and value-convergence are well-defined, i.e. the limits of the infinite sums
always exist and are unique. Note that for all expressions s ∶ nat: EXCV(s) = ∑

i∈N
EXVCV(s, i).

For the expression t from Example 2.3, we have EXCV(t)=1 and EXVCV(t,0)=0.75, EXVCV(t,2)=
0.25 and EXVCV(t, i) = 0 for i /∈ {0,2}.

We define the contextual semantics of ProbPCFneed in terms of contextual equivalence which iden-
tifies expressions as equal if their behavior is the same when they are plugged into any context. As
behavior we observe the expected convergence and as tests (i.e. the contexts) we only consider natural
numbers as output.
Definition 2.4 (Contextual Preorder and Equivalence). Let s,t ∶ σ . If for all contexts C[⋅σ ] ∶ nat, we have
EXCV(C[s]) ≤ EXCV(C[t]), then s ≤c t. We define s ∼c t iff s ≤c t and t ≤c s. The relation ≤c is called
contextual preorder, and ∼c is called contextual equivalence.

The contextual preorder can be used to compare and order non-equivalent expressions. For instance,
diverging programs are least elements of the preorder.

2.3 Distribution-Equivalence

Definition 2.5. A (discrete) probability distribution is a function p ∶ N→ [0,1] such that ∑i∈N p(i) ≤ 1.
Stochastic programs s of ProbPCFneed induce a probability distribution by setting p(n) ∶= EXVCV(s,n).
For stochastic program s, let sd be its distribution function, i.e. for all i ∈N: sd(i) = EXVCV(s, i).

The defect, i.e. 1−∑i∈N p(i) is the probability of non-termination, sometimes denoted as p(�). As
usual, for a program s ∶ nat, the expected value of s is E[s] =∑i∈N i ⋅ sd(i).
Definition 2.6 (Distribution-Equivalence). We say a distribution d′ approximates a distribution d iff for
all i ∈N: d′(i) ≤ d(i). If d′ approximates d, then we also write d′ ≤ d.

We also use the formulation for the programs that generate the distributions, i.e. for stochastic pro-
grams s,t ∶ nat, we write s ≤d t (called distribution approximation) if sd ≤ td holds. If and only if s ≤d t
and t ≤d s hold, then we write s ∼d t and say that s and t are distribution-equivalent.

On stochastic programs we know that distribution-equivalence is the same as contextual equivalence
[21]. We conjecture that also contextual preorder and distribution approximation coincide (i.e. s ≤c t ⇐⇒
s ≤d t), but its proof is work in progress.
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2.4 Examples

For the examples, we assume that usual operations on numbers like +, −, ∗, and comparisons like ==, <=
etc. are already defined.

A very simple game is tossing a coin with a bet of 1 euro. Head wins and tail loses. For simplicity,
let us encode the result tail with 0 and head with 1. The outcome of euro (not including the bet) after
playing the simple game can be programmed as:

simpleGame = if (0⊕1) == 0 then 0 else 1

The expected value convergence for 0 and 1 is 0.5, for all other numbers it is 0. Hence the distribution
function of simpleGame is

simpleGamed(i) =
⎧⎪⎪⎨⎪⎪⎩

0.5, i ∈ {0,1}
0, otherwise

The expected value is E[simpleGame] = 0.5.
An extension of the simple game is to proceed in case of losing and then iterating this until head

occurs. In this case the player has an infinite amount of money to play the game arbitrary often.
The corresponding program to compute the outcome is:

game1 = let throw = λ f .λbet.if (0⊕1) == 1 then bet else f bet in fix throw 1

Even there is an infinite sr-reduction sequence of game1 (if always 0 is the result of 0⊕1), this experi-
ment terminates with probability 1, i.e. the expected convergence is EXCV(game1) = 1 and the expected
outcome is E[game1] = 1. The distribution function is

game1d(i) =
⎧⎪⎪⎨⎪⎪⎩

1, i = 1
0, otherwise

Note that our modeling ignores the amount of invested money.
As another variant, we consider the game, where the bet is doubled in the case of losing. Again let

us ignore the invested amount and just compute the outcome:

game2 = let throw = λ f .λbet.if (0⊕1) == 1 then bet else f (2∗bet) in fix throw 1

The expected convergence is EXCV(game2) = 1 the distribution function is

game2d(i) =
⎧⎪⎪⎨⎪⎪⎩

1
2i , if i = 2 j, j ∈N
0, otherwise

and the expected value of is infinite, since the infinite sum ∑i∈N2i+1 ⋅ 1
2i =∑i∈N

1
2 has no upper bound.

3 The Language Extension ProbPCFneed
R

We introduce an extension of ProbPCFneed by more flexible coin tosses with real-valued probabilities in
the interval (0,1). We only permit probabilities that are computable numbers. The computable numbers
include rational numbers and solutions of polynomial equations, for example 0.5

√
2.
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Definition 3.1 (Syntax and Semantics of ProbPCFneed
R ). The language ProbPCFneed

R is defined as an
extension of ProbPCFneed by permitting a computable probability for every single coin toss. The syntax
extension is to permit s

r
⊕ t, where r is a computable number in (0,1).

The standard reduction is not changed, however, we define a probability measure for prob-reductions
as follows. We define:

(sr,probl) R[s
r
⊕ t]→ R[s] has probability measure r

(sr,probr) R[s
r
⊕ t]→ R[t] has probability measure 1− r

For a sr-sequence s0
sr,a1ÐÐ→ s1⋯

sr,anÐÐ→ sn, the prob-sequence PS(s0
sr,a1ÐÐ→ s1⋯

sr,anÐÐ→ sn) is the sequence of
pairs (ai,ri) derived from a1, . . . ,an as follows: first drop all labels ai /∈ {probl, probr} and for the labels
ai ∈ {probl, probr} replace ai by (ai,ri) where ri is the probability measure of the reduction si−1

sr,aiÐÐ→ si.
In ProbPCFneed

R we use the same definitions as in ProbPCFneed for the probability P(S) of prob-
sequences S, the set of evaluations Eval(s) for expression s, the expected convergence EXCV(s), the
expected value convergence EXVCV(s,n) of s on value n, the contextual preorder and equivalence, and
distribution approximation and equivalence.

3.1 Examples

We first give an example with rational probabilities, and then consider an example where real-valued
probabilities occur.

Example 3.2 (The Monty-Hall-Problem). The problem is this: There are three doors, behind one door
is a very valuable prize like a car, behind the other two doors there are (less valuable) goats. The task is
to find (and win) the one with car. The rule is that there is a first choice among the three doors, however,
without opening the door. Then you obtain the specific information which one of the remaining other
two doors contains a goat. Then you are allowed to choose again. The issue is whether it is better to stick
to your first choice, or choose the other unopened door.

We represent winning the car by 0 and use 1 for losing (choosing one of the goats). We also encode
the strategy of the player with numbers 0 and 1, where 0 means stay and 1 means changing the decision.
Then the problem can be modeled as the following abstraction, that receives the strategy as input:

montyHall ∶=λ strategy.let firstChoose = 0
1/3
⊕ 1 // 1 of 3 doors contains the car

in if strategy // stay
then firstChoose
else // change
if firstChoose // if firstChoose was the car
then 1 // switch to the goat
else 0 // otherwise, switch from a goat to the car

Then the equivalence montyHall 0 ∼d 0
1/3
⊕ 1 holds, which means that we win with probability of 1/3

and we lose with probability of 2/3. For change our decision, we obtain the equivalence montyHall 1 ∼d

0
2/3
⊕ 1, which means that we win with probability of 2/3 and lose with probability of 1/3. And thus the

recommendation is to change the choice.
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Example 3.3. As an example using real-valued probabilities, we consider a simplified dart board.
The dart board has a diameter of 1 meter. The board has six

segments (of equal size), the bull’s-eye in the middle of the board
has a diameter of 0.1 meter. We assume that the board hangs on a
wall of 2×2 meters.

Suppose that hitting the bull’s-eye is worth 10 points, hitting the
i− th segment is worth i points, and hitting the wall gives 0 points.

The result of a random dart throw can be expressed in
ProbPCFneed

R by the following program (given as an abstraction that
ignores its argument):

1
2

3
4

5

6

0.1
m 2

m

1 m
A darts board on the wall

throwDart = λd.let wall = 0 in let segment = 1
1/6
⊕ (2

1/5
⊕ (3

1/4
⊕ (4

1/3
⊕ (5

1/2
⊕ 6))))

in let bullseye = 10
in let board = bullseye

1/100
⊕ segment in board

π/16
⊕ wall

The distribution of throwDart 0 is (throwDart 0)d(10) = π/1600, (throwDart 0)d(i) = 99π/9600 for
i = 1,2,3,4,5,6, (throwDart 0)d(0) = 1−π/16 and (throwDart 0)d(i) = 0 for i /∈ {0,1,2,3,4,5,6,10}.
The program throwDart can be used to perform other experiments, like randomly throwing 100 darts etc.

4 Conservativity of the Extension

Clearly, the language ProbPCFneed
R is an extension of ProbPCFneed, since the probability 0.5 can be

represented. More formally, consider the sublanguage of ProbPCFneed
R where only s

0.5
⊕ t is allowed as

prob-expression. This sublanguage is isomorphic to ProbPCFneed with the same definition of expected
(value) convergence and the same contextual semantics. However, as we show, in the sublanguage ev-
ery s

r
⊕ t-expression can be simulated by a recursive program and thus the sublanguage and the full

language are equivalent w.r.t. contextual equivalence. This immediately implies that ProbPCFneed and
ProbPCFneed

R are equivalent w.r.t. contextual equivalence.
In abuse of notation, we say that expressions s ∶ nat ∈ ProbPCFneed and t ∶ nat ∈ ProbPCFneed

R are
distribution-equivalent if they induce the same probability distribution, i.e. for for all i ∈N: sd(i) = td(i).
Theorem 4.1. For every stochastic program s ∶ nat in ProbPCFneed

R there exists a distribution-equivalent
stochastic program s′ ∶ nat in ProbPCFneed.

The program s′ will be defined by the following encoding enc, which we explain in detail before
proving Theorem 4.1. The core idea of enc is to recursively perform fair coin-tosses for every bit of
the bit-expansion of r, which is computable, since r is computable. This approach is well-known, for
instance, in the setting of probabilistic Turing machines [4, Lemma 7.12].
Definition 4.2 (Encoding enc). Let r ∈ (0,1) be a computable real number. Let fr be a computable func-
tion (given as a ProbPCFneed-abstraction not containing any ⊕-operator) that computes the bit expansion
of r, i.e. we assume that

r =
∞

∑
i=1

ai

2i and that fr i =
⎧⎪⎪⎨⎪⎪⎩

0, if ai = 1
1, if ai = 0

Since r is computable and PCF with the fixpoint operator is Turing-complete, fr exists. The expression
s

r
⊕ t is encoded as follows:

enc(s
r
⊕ t) =let fr = . . . in fix (λg, i,x,y.if ( fr i) then x⊕(g (succ i) x y)

else y⊕(g (succ i) x y)) 1 enc(s) enc(t)
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We extend the encoding to other program constructs by applying enc homomorphically over the term
structure, i.e. enc(F s1 . . . sn) = F enc(s1) . . . enc(sn) for all language constructs F /=

r
⊕.

Given s
r
⊕ t, the encoded expression enc(s

r
⊕ t) recursively creates prob-expressions x⊕ y where x

and y are variables bound to enc(s) and enc(t), respectively. The encoding recursively inspects the bit
expansion of r. For every bit position, it calls the function fr to determine whether the current bit is 0
or 1 in the bit expansion of r. In both cases a prob-expression is generated. If the current bit is set, then
the left argument is the variable x, otherwise, it is the variable y, the right argument is the recursive call
for inspecting the next bit position of r. If we inspect any evaluation of the encoding, then we verify
that it does recursive steps until it does a probl-step and then chooses x or y and then proceeds with the
evaluation of enc(s) or enc(t), resp.

We sum the probabilities of all reduction sequences starting with the encoded expression and after
the first probl-reduction. We split into two cases: if we include the sequences where the probl-reduction
results in x, then it is the infinite sum ∑∞i=1

ai
2i which is equal to r. If only the sequences are included

where the probl-reduction results in y, then the probability is ∑∞i=1
∣1−ai∣

2i which is equal to 1− r.

Example 4.3. We first consider a rational probability. Let m /= n. The expression m
1/3
⊕ n is encoded as

s = enc(m
1/3
⊕ n) =let f1/3 = λ i.(i mod 2) in

fix (λg, i,x,y.if ( f1/3 i) then x⊕(g (succ i) x y) else y⊕(g (succ i) x y)) 1 m n

and unfolds to n⊕ (m⊕ (n⊕ (m⊕ (n⊕ . . .. This shows EXVCV(s,m) = ∑
i∈N

1
22(i+1) = ∑

i∈N
( 1

4)
i+1 = 1

3 and

EXVCV(s,n) = ∑
i∈N

1
22i+1 = ∑

i∈N

1
2i − ∑

i∈N

1
22(i+1) = 1− 1

3 =
2
3 .

As an example with an irrational probability, consider (a
τ

⊕ b) where τ is the Prouhet–Thue–Morse
constant (see e.g. [7, Sect. 6.8]) and a /= b are natural numbers. Number τ is computable and the ith

bit of τ (for i = 1,2, . . .) can be computed by h (pred i) where h is recursively defined as h = de fh with
de fh = λ i.if i then 0 else if i mod 2 then h (i div 2) else 1−(h (i div 2)). Thus:

s = enc(a
τ

⊕ b) =let fτ = λ i.let h = de fh in 1−(h (pred i)) in
fix (λg, i,x,y.if ( fτ i) then x⊕(g (succ i) x y) else y⊕(g (succ i) x y)) 1 a b

Unfolding s results in (b ⊕ (a ⊕ (a ⊕ (b ⊕ (a ⊕ (b ⊕ (b ⊕ (a ⊕ . . . and EXVCV(s,a) = τ

and EXVCV(s,b) = 1−τ . A problem where probability τ occurs is the following game: Alice and Bob
repeatedly toss a fair coin taking turns according to the Thue-Morse-sequence [1]: Alice starts, then Bob.
After that, the sequence is extended by the inverted sequence that has already been constructed (where
inverted means exchanging Alice with Bob and vice versa). The sequence begins with Alice, Bob, Bob,
Alice, Bob, Alice, Alice, Bob, and so on. The first person to flip heads wins. Then the probability that

Bob wins is τ . Encoding Alice as 2 and Bob as 1, the above problem can be modeled as (1
τ

⊕ 2).
Our encoding enc applies the following two program equivalences (indefinitely) for r′ = 0.5 :

Lemma 4.4. In ProbPCFneed
R the following equivalences hold:

1. s
r
⊕ t ∼c s

r′
⊕ (s

r−r′

1−r′⊕ t) if r′ ≤ r and r′ ∈ (0,1) 2. s
r
⊕ t ∼c t

r′
⊕ (s

r
1−r′⊕ t) if r′ > r and r′ ∈ (0,1)

The proof of the lemma is sketched in Appendix A). It uses a so-called context lemma for contextual
equivalence, which is says that the inequation EXCV(C[s]) ≤ EXCV(C[t]) holds, for all s,t ∶ σ and

62



D. Sabel, M. Schmidt-Schauß

contexts C[⋅σ ] ∶ nat provide that ∀k ≥ 0 and for all reduction contexts R[⋅σ ] ∶ nat there exists d ≥ 0,
such that EXCV(R[s],k) ≤ EXCV(R[t],k+d). Here EXCV(u,k) means the expected convergence of
expression u where only at most k prob-reductions are allowed. The bound on the number of prob-
reductions is helpful to perform inductive proofs.

We sketch the proof of Theorem 4.1. It uses the following two propositions. Both are proved in
Appendix A. The first proposition shows the correctness of the encoding (w.r.t. distribution equivalence)
for all closing reduction contexts.

Proposition 4.5. Let R be a reduction context, s, t be prob-free expressions, r ∈ (0,1) be a computable

real number. Let R[s
r
⊕ t] be a stochastic program. Then R[s

r
⊕ t] ∼d R[enc(s

r
⊕ t)].

The following proposition is similar to a context lemma for distribution-equivalence. It allows us to
transfer the result on all reduction contexts to all contexts. In [21] we have shown a restricted form of the
proposition in ProbPCFneed, where s and t had to be closed and of type nat (i.e. stochastic programs).
We provide a generalisation for ProbPCFneed

R where s and t might be open.

Proposition 4.6. Let C[⋅1,σ . . . , ⋅n,σ ] ∶ nat be a context with n holes, s,t ∶ σ such that C[s, . . . ,s] and
C[t, . . . ,t] are closed. If for s,t ∶ σ , and all reduction contexts R[⋅σ ] ∶ nat such that R[s] and R[t] are
closed, we have R[s] ∼d R[t]. Then C[s, . . . ,s] ≤d C[t, . . . ,t].

We finally prove Theorem 4.1 by combining Propositions 4.5 and 4.6:

Proof of Theorem 4.1. Let s be a stochastic program with several prob-expressions. Then we can replace
each prob-expression with its encoding, starting with the innermost expression. By Proposition 4.6, this
replacement will preserve the distribution-equivalence, since the original expression and its encoding are
distribution-equivalent by Proposition 4.5.

5 Conclusion

We extended our previously introduced probabilistic call-by-need language with computable real-valued
probabilities and have shown that the extension can be encoded in the smaller language without changing
the distribution for closed programs of type nat.

A result from [4, Lemma 7.12] on probabilistic Turing machines can be reformulated for our setting
as: The expected number of reduction steps and probabilistic fair choices to simulate a choice with real-
valued probability can be estimated as O(1) provided the number of steps for computation of the ith bit
is polynomial in i.

For future work we may investigate algorithmic approximations of probabilistic (closed) programs:
this may include semantic approximations by restricting the number of prob-reductions in evaluations,
or by restricting the number of sr-steps and then stopping with no result. This will approximate the
real distribution of the program. We may also program this approximation, for instance, by providing
approximating encodings enc≈ similar to enc that stop after performing a limit of prob-steps. In this case
the programs can be compared w.r.t. distribution approximation, where enc≈(s) ≤d s should hold.

As a technical detail we should prove that distribution approximation is equivalent to contextual
preorder (for stochastic programs). This proof is work in progress.
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A Proofs

For an expression s ∈ ProbPCFneed
R , let EXCV(s,k) and EXVCV(s,n,k) be the expected (value) conver-

gence of s restricted to evaluations that do not use more than k prob-reductions, i.e.

EXCV(s,k) = ∑
S ∈ Eval(s), ∣S∣ ≤ k

P(S) and EXVCV(s,n,k) = ∑
S ∈ Eval(s),val(WHNF(s,S)) =m, ∣S∣ ≤ k

P(S)

Since (EXCV(s,k))∞k=0 and (EXVCV(s,n,k))∞k=0 are monotonically increasing and bounded by EXCV(s),
or EXVCV(s,n), we have lim

k→∞
EXCV(s,k) = EXCV(s) and lim

k→∞
EXVCV(s,n,k) = EXVCV(s,n).

The following context lemma was proved for ProbPCFneed, but also holds in ProbPCFneed
R :

Theorem A.1 (Context Lemma). Let σ be a type, let s,t ∶ σ such that ∀k ≥ 0 and for all reduction
contexts R[⋅σ ] ∶ nat there exists d ≥ 0, such that EXCV(R[s],k) ≤ EXCV(R[t],k+d), and let C[⋅σ ] ∶ nat
be a context. Then the inequation EXCV(C[s]) ≤ EXCV(C[t]) holds.

Proof of Lemma 4.4. We demonstrate the proof for the first equivalence. Let r ∈ (0,1), r′ ∈ (0,1), r′ ≤ r
and s,t ∶ σ . Let R[⋅σ ] ∶ nat be a reduction context. We have to show two directions. First let k ≥ 0 and

EXCV(R[s
r
⊕ t],k)= p. Then we choose d = 1 and show EXCV(s

r′
⊕ (s

r−r′

1−r′⊕ t),k+d)= q≥ p. First, consider
the case k = 0. Then p = 0 and p ≤ q holds. Now assume k > 0. Then

p = EXCV(R[s
r
⊕ t],k) = rEXCV(R[s],k−1)+(1− r)EXCV(R[t],k−1)

≤ rEXCV(R[s],k−1)+(1− r)EXCV(R[t],k−1)
+r′EXCV(R[s],k)− r′EXCV(R[s],k−1) = EXCV(R[s

r′
⊕ (s

r−r′

1−r′⊕ t)],k+1) = q

The context lemma shows s
r
⊕ t ≤c s

r′
⊕ (s

r−r′

1−r′⊕ t). For the other direction of the claim, we show q′ =

EXCV(R[s
r′
⊕ (s

r−r′

1−r′⊕ t)],k) ≤ EXCV(s
r
⊕ t,k) = p′ for all k. For k ≥ 2, we have

q′ = EXCV(R[s
r′
⊕ (s

r−r′

1−r′⊕ t)],k)
= rEXCV(R[s],k−2)+(1− r)EXCV(R[t],k−2)+ r′EXCV(R[s],k−1)− r′EXCV(R[s],k−2)
≤ rEXCV(R[s],k−1)+(1− r)EXCV(R[t],k−1)+ r′EXCV(R[s],k−1)− r′EXCV(R[s],k−1)
= rEXCV(R[s],k−1)+(1− r)EXCV(R[t],k−1) = EXCV(R[s

r
⊕ t],k) = p′

For k = 0, the inequation q′ ≤ p′ also holds, since q′ = 0. For k = 1, the inequation q′ ≤ p′ also holds, since

EXCV(R[s
r′
⊕ (s

r−r′

1−r′⊕ t)],k) = r′EXCV(R[s],0) ≤ rEXCV(R[s],0)+(1−r)EXCV(R[t],0) = EXCV(R[s
r
⊕

t],1) since r′ ≤ r. Thus, the context lemma shows s
r′
⊕ (s

r−r′

1−r′⊕ t) ≤c s
r
⊕ t.

The following lemmas show how to transfer results with bounds to the limit. The proofs are straight-
forward (see [18, 19] for similar proofs).
Lemma A.2. Let s,t ∶ τ . (i) If ∀k ≥ 0 ∶ ∃d ∶ EXCV(s,k) ≤ EXCV(t,k+d), then EXCV(s) ≤ EXCV(t).

(ii) If ∀k ≥ 0 ∶ ∃d ∶ EXVCV(s,n,k) ≤ EXVCV(t,n,k+d), then EXVCV(s,n) ≤ EXVCV(t,n).
Lemma A.3. Let s,t ∶ τ . (i) If ∀k ≥ 0 ∶ EXCV(s,k) ≤ EXCV(t) and for every ε > 0 there exists kε ≥ 0 with
EXCV(t)−EXCV(s,kε) < ε , then EXCV(s) = EXCV(t).

(ii) If∀k ≥0 ∶EXVCV(s,n,k)≤EXVCV(t,n) and for every ε >0 there exists kε ≥0 with EXVCV(t,n)−
EXVCV(s,n,kε) < ε , then EXVCV(s,n) = EXVCV(t,n).
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Proof of Proposition 4.5. For proving distribution equivalence, it suffices to show EXVCV(R[s
r
⊕ t],n)=

EXVCV(R[enc(s
r
⊕ t)],n) for all n ∈N. Let n be arbitrary but fixed. Using Lemma A.3 it suffices to show

1. For all k ∈N: EXVCV(R[enc(s
r
⊕ t)],n,k) ≤ EXVCV(R[s

r
⊕ t],n)

2. For every ε > 0 there exists kε : EXVCV(R[s
r
⊕ t],n)−EXVCV(R[enc(s

r
⊕ t)],n,kε) < ε

We prove Item 1: In any reduction context R the first sr-step of R[s
r
⊕ t] reduces the prob-expression

in R. This justifies the equation EXVCV(R[s
r
⊕ t,n) = r ⋅EXVCV(R[s],n)+ (1− r) ⋅EXVCV(R[t],n).

We now show EXVCV(R[enc(s
r
⊕ t)],n,k) ≤ EXVCV(R[s

r
⊕ t],n) by induction on k: If k = 0, then

EXVCV(R[enc(s
r
⊕ t)],n,0) = 0. If k > 0, then the reduction of R[enc(s

r
⊕ t)] reduces enc(s

r
⊕ t). The

recursive function g is called and a probl- or probr-step is made. There are two cases:
• r ≥ 0.5: the function g of the encoding enc inspects fr(i) starting from the current i = 1. Since

r ≥ 0.5 the first bit of of the bit-expansion of r is 1 and thus for the recursive call the bit is removed
and i is increased by one. This means to shift the number to the next bit. We verify that this is
equivalent to subtracting 0.5 from r and then multiplying the result by 2 (for the shift). Thus:

EXVCV(enc(s
r
⊕ t),n,k) = 0.5 ⋅EXVCV(R[s],n,k−1)+0.5 ⋅(R[enc(s

r
⊕ t)],n,k−1)

I.H.
≤ 0.5 ⋅EXVCV(R[s],n,k−1)+0.5 ⋅(EXVCV(R[s

r
⊕ t],n))

≤ 0.5 ⋅EXVCV(R[s],n)+0.5 ⋅(EXVCV(R[s
2(r−0.5)
⊕ t],n))

= 0.5 ⋅EXVCV(R[s],n)+0.5(2(r−0.5) ⋅EXVCV(R[s],n)+(1−2(r−0.5)) ⋅EXVCV(R[t],n))
= 0.5 ⋅EXVCV(R[s],n)+(r−0.5)EXVCV(R[s],n)+(1− r)EXVCV(R[t],n)
= r ⋅EXVCV(R[s],n)+(1− r) ⋅EXVCV(R[t],n) = EXVCV(R[s

r
⊕ t],n)

• r < 0.5: The recursive call of g only increases i by one, which means shifting the bit representation
of r by one or equivalently multiplying r by 2. So in this case we compute as follows:

EXVCV(enc(s
r
⊕ t,n,k)) = 0.5 ⋅EXVCV(R[t],n,k−1)+0.5 ⋅(R[enc(s

2r
⊕ t)],n,k−1)

I.H.
≤ 0.5 ⋅EXVCV(R[t],n,k−1)+0.5 ⋅(EXVCV(R[s

2r
⊕ t],n))

≤ 0.5 ⋅EXVCV(R[t],n)+0.5 ⋅(EXVCV(R[s
2r
⊕ t],n))

= 0.5 ⋅EXVCV(R[t],n)+0.5(2rEXVCV(R[s],n)+(1−2r) ⋅EXVCV(R[t],n))
= 0.5 ⋅EXVCV(R[t],n)+ rEXVCV(R[s],n)+(0.5− r)EXVCV(R[t],n)
= r ⋅EXVCV(R[s],n)+(1− r) ⋅EXVCV(R[t],n) = EXVCV(R[s

r
⊕ t],n)

For Item 2, we have: for δ > 0, there exists kδ such that EXVCV(R[s
r
⊕ t],n)−EXVCV(R[s

r
⊕ t],n,k)< δ ,

since limk→∞EXVCV(R[s
r
⊕ t],n,k) = EXVCV(R[s

r
⊕ t],n). With EXVCV(R[enc(s

r
⊕ t),n,(k1,k2)])

we denote the expected value convergence of R[enc(s
r
⊕ t)]where at most k1 prob-reductions are allowed

for evaluating enc(s
r
⊕ t) and at most k2 +1 prob-reductions are allowed for other prob-reductions, i.e.

inside R, perhaps using the result of enc(s
r
⊕ t). Then ∀k1,k2 ∶ EXVCV(R[enc(s

r
⊕ t),n,(k1,k2)]) ≤

EXVCV(R[s
r
⊕ t],k2), since s and t are prob-free. Assume that k2 is fixed. Then EXVCV(R[s

r
⊕ t],k2)−

EXVCV(R[enc(s
r
⊕ t),n,(k1,k2)]) < 1

2k1
, since enc(s

r
⊕ t) can evaluate the k1 bits of the bit-expansion

of r. This shows that for every ξ > 0 there exists a kξ with EXVCV(R[s
r
⊕ t],k2)−EXVCV(R[enc(s

r
⊕

t),n,(kξ ,k2)]) < ξ . This implies limk1→∞EXVCV(R[enc(s
r
⊕ t)],n,(k1,k2)) = EXVCV(R[s

r
⊕ t],k2).
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Finally, let δ = ε/2, then there exists k2 with EXVCV(R[s
r
⊕ t],n)−EXVCV(R[s

r
⊕ t],n,k2)< ε/2. Let

ξ = ε/2 there exists a k3 with EXVCV(R[s
r
⊕ t],k2)−EXVCV(R[enc(s

r
⊕ t),n,(k3,k2)]) < ε/2 and thus

EXVCV(R[s
r
⊕ t],n)−EXVCV(R[enc(s

r
⊕ t)],n,(k3,k2)) < ε . Since EXVCV(R[enc(s

r
⊕ t)],n,(k3,k2))

< EXVCV(R[enc(s
r
⊕ t)],n,k3+k2) < EXVCV(R[enc(s

r
⊕ t)],n) < EXVCV(R[s

r
⊕ t],n), this also shows

EXVCV(R[s
r
⊕ t],n)−EXVCV(R[enc(s

r
⊕ t)],n,k3+k2) < ε .

Proof of Proposition 4.6. Let u =C[s, . . . ,s] and v =C[t, . . . ,t]. From Lemma A.2 it suffices to show for
all n ∈ nat: for all ∀k ∶ EXVCV(u,n,k) ≤ EXVCV(v,n). For the remaining proof, we fix s,t, and the
maximal number k of prob-reductions permitted in evaluations of u =C[s, . . . ,s]. With v =C[t, . . . ,t], we
show that EXVCV(u,n,k) ≤ EXVCV(v,n) for all closing C. The proof is by induction on (i) the maximal
number k of prob-reductions of C[s, . . . ,s], (ii) the number of all reduction steps of C[s, . . . ,s] until the
next prob-reduction; and 0 if the reduction does not contain any prob-reduction steps; and (iii) the number
of holes of the context C. We consider evaluations (resp. sr-steps) of the respective expressions.

• One base case is that C[⋅, . . . , ⋅] is a WHNF and there are no sr-steps. Then C[s, . . . ,s] as well as
C[t, . . . ,t] are WHNFs. Due to the type, these are the same natural number (in an LR-context).
Hence we have EXVCV(C[s, . . . ,s],n) = EXVCV(C[t, . . . ,t],n]).

• There is no evaluation of C[s, . . . ,s] under the restriction on k and without prob-reduction steps: for
example it may be non-terminating or get stuck since a prob-expression cannot be evaluated. Then
the contribution of C[s, . . . ,s] is 0, and hence EXVCV(C[s, . . . ,s],n,k) ≤ EXVCV(C[t, . . . ,t],n).

• If C[s, . . . , ⋅i,σ , . . . ,s] is a reduction context for some i. Then there is j such that C[r1, . . . , ⋅ j,σ , . . . ,rn]
is a reduction context for all expressions rk. We investigate the two pairs

– C[s, . . . ,[s] j, . . . ,s] and C[t, . . . ,t,[s] j,t . . . ,t],
– C[t, . . . ,t,[s] j,t . . . ,t] and C[t, . . . ,[t] j, . . . ,t].

The precondition on R[s] ∼d R[t] shows that the expressions of the latter pair are equivalent
w.r.t. ∼d . For the first pair, we use the context C[⋅, . . . ,[s] j, . . . , ⋅] with n− 1 holes and use the
induction hypothesis (on the number of holes) to show that EXVCV(C[s, . . . ,[s] j, . . . ,s],n,k) ≤
EXVCV(C[t, . . . ,t,[s] j,t . . . ,t],n). Applying the inequation EXVCV(C[t, . . . ,t,[s] j,t . . . ,t],n) ≤
EXVCV(C[t, . . . ,t,[t] j,t . . . ,t],n), we conclude EXVCV(C[s, . . . ,s],n,k)≤EXVCV(C[t, . . . ,t],n).

• C[s, . . . ,[⋅i,σ ], . . . ,s] is not a reduction context for any hole i.
Then the same holds for C[t, . . . ,[⋅i,σ ], . . . ,t]. If there is no sr-reduction step, then the expected
convergence of u and v is 0. If expression u has an sr-reduction step, then the same reduction step
at the same position can be used for C[t, . . . ,t]. There are two cases:

– The sr-reduction is not a prob-reduction, and results are C′[s, . . . ,s] and C′[t, . . . ,t], resp. We
can use induction on the number of sr-steps of C′[s, . . . ,s] to obtain the desired inequality.

– The sr-step of C[s, . . . ,s] is a prob-reduction with r ∈ R. We apply the same prob-reduction
to C[t, . . . ,t]. We obtain C′[s, . . . ,s] and C′[t, . . . ,t], with a contribution of r and 1− r to the
computed distribution. The other possibility of the prob-reduction results in C′′[s, . . . ,s] and
C′′[t, . . . ,t]. Induction on the number of prob-reductions shows EXVCV(C′[s, . . . ,s],n,k−
1) ≤ EXVCV(C′[t, . . . ,t],n), EXVCV(C′′[s, . . . ,s],n,k−1) ≤ EXVCV(C′′[t, . . . ,t],n), resp.
and so

r ⋅EXVCV(C′[s, . . . ,s],n,k−1)+ (1− r) ⋅EXVCV(C′′[s, . . . ,s],n,k−1)
≤ r ⋅EXVCV(C′[t, . . . ,t],n)−(1− r) ⋅EXVCV(C′′[t, . . . ,t],n)
= EXVCV(C[t, . . . ,t],n)
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Formal verification techniques are frequently used to ensure correctness properties of distributed
systems and algorithms. However, languages used for formal modeling and verification are often
substantially different from languages used in software development, and verifying an abstract rep-
resentation of an algorithm does not ensure that its handwritten implementation will be correct. This
paper presents work in progress on a verified compiler for an extension of Lamport’s PlusCal with
threads and communication channels. Its syntax and semantics are formalized in the Lean 4 proof as-
sistant and the passes compiling PlusCal algorithms into Go code are implemented in the underlying
Lean 4 programming language. This paper gives formal semantics for the first pass of the compiler
and outlines its mechanically verified correctness proof.

1 Introduction

Distributed systems and the distributed algorithms that these systems implement are notoriously difficult
to design and to verify. This is due to the high number of potential executions that interleave steps of
system components (distributed nodes, threads, messaging subsystem) executing independently, leading
to bugs that are difficult to reproduce. Formal verification techniques such as model checking or theo-
rem proving help ensure correctness properties of algorithms and of programs. They can be applied at
different levels of abstraction. In particular, verifying formal specifications of distributed algorithms at
high levels of abstraction allows designers to identify errors that would be very costly to correct dur-
ing later development stages. However, languages used for formal modeling and verification are often
substantially different from languages used in software development. Moreover, verifying an abstract
representation of an algorithm does not ensure that its implementation will be correct if the translation
from a verified specification to a concrete implementation is manual and thus, error-prone and potentially
introducing subtle bugs.

Whereas the translation of sequential programs, including formal compiler verification, is now-
adays a well-understood problem [Ler09], similar techniques for concurrent and distributed programs
have been studied to a much lesser extent. Preliminary work exists for Erlang [ZBF20, HB24], Dist-
Algo [LSL17] (a domain-specific language extension of Python), Modular PlusCal [HHC+23] (a su-
perset of PlusCal), but the full formal verification of such translations has not been one of the primary
goals. The verification aspect is more significant in Verdi [WWP+15], a framework for implementing
distributed systems using OCaml and formally verifying their properties in Coq.

A step towards bridging the gap between the formal specification and the corresponding implemen-
tation is the use of modeling languages that are closer to programming languages. In the context of
TLA+ [Lam02], a specification formalism that is based on mathematical set theory and temporal logic,
PlusCal [Lam09] was proposed as an algorithmic language intended for the description of concurrent
and distributed algorithms and systems. PlusCal combines the “look and feel” of imperative pseudo-code
with the full power of mathematical set theory, used for modeling the data structures manipulated by the
algorithm. It is therefore well suited to modeling systems at an intermediate level between abstract TLA+
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Guarded PlusCal

Network PlusCal

. . .

Go

Figure 1: Outline of the compilation.

specifications and executable code. PlusCal algorithms are translated to TLA+ specifications and can be
verified using the TLA+ model checkers [YML99, KKT19] or the proof assistant TLAPS [CDL+12],
thus allowing a system designer to obtain high confidence in the correctness of the algorithm.

This work specifically targets Distributed PlusCal [CM23], an extension of PlusCal for describing
distributed algorithms. The overall objective is to design a verified compiler from Distributed PlusCal
to Go. Following standard practice, our compiler is structured as a sequence of transformation passes.
Each pass introduces more concrete intermediate representations, systematically bridging the semantic
gap between the high-level input and the target executable language by introducing refinements of the
semantics of the original specification. The compiler is developed in the Lean 4 proof assistant [MU21],
which serves both as a functional programming language and as a proof environment. Figure 1 illus-
trates the compilation phases. As we will explain in Section 3, the compiler takes as input programs in
the Guarded PlusCal fragment of Distributed PlusCal. The downward (blue) arrows in the diagram rep-
resent transformations that have been programmed in Lean. The main contribution of this paper are the
formal definition of the semantics of Guarded PlusCal and thus of Network PlusCal, which is a fragment
of Guarded PlusCal, and a mechanized correctness proof of the first phase of compilation, represented
by the upward (red) arrow in the diagram. We expect to apply the same overall methodology for the
remaining phases.

Outline. We introduce in Section 2 Distributed PlusCal and present in Section 3 the formal syntax
and semantics of Guarded PlusCal. Section 4 describes the first pass of the compiler and its correctness
proof. We finally discuss the next steps in the development of the compiler.

2 Distributed PlusCal

TLA+ [Lam02] is a formalism for describing algorithms and systems at a high level of abstraction. It
is based on mathematical set theory for representing data structures in terms of sets and functions, and
on the Temporal Logic of Actions (TLA) for representing executions of systems. TLA+ specifications
usually consist of a predicate describing the possible initial states, a predicate that represents the possible
state transitions (w.r.t. all state variables appearing in the specification), and some liveness or fairness
property expressed as a formula of temporal logic. The formal verification of TLA+ specifications is
supported by the explicit-state model checker TLC, the SMT-based symbolic model checker Apalache,
and the proof assistant TLAPS. Konnov et al. [KKM22] present an overview of the different verification
tools applied to a common case study.

PlusCal [Lam09] was designed as a language for describing algorithms, providing a syntax that
resembles imperative pseudo-code, including a process abstraction for modeling concurrent programs.
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It relies on the rich language of expressions of TLA+, which allows for a high level of expressiveness,
but also means that PlusCal algorithms are in general not executable. Distributed PlusCal [CM23]
extends PlusCal with threads and also with communication channels. Both extensions are relevant for
describing distributed algorithms: nodes of distributed systems are modeled by Distributed PlusCal
processes and communicate by message passing, and they may contain threads that share access to the
node’s local memory. For example, a node could have a main thread of execution and a second thread for
handling incoming messages in the background. The (Distributed) PlusCal translator generates a TLA+

specification from the algorithm and inserts it within the module containing the algorithm. Properties of
algorithms are expressed as TLA+ formulas and are verified using the standard TLA+ tools.

The overall structure of a Distributed PlusCal algorithm consists of sections that declare global
variables, operators, macros, and procedures (each of which may be empty) and a final section which
contains either process declarations as shown in Listing 2.1 or a single body of statements representing
a sequential algorithm.

Distributed PlusCal statements include skip (which does nothing), assignments, conditional state-
ments, while loops, procedure calls, and goto. Processes and threads may synchronize using the await
instruction that blocks until a predicate becomes true. Distributed PlusCal also includes two forms of
non-deterministic control structures: either . . . or . . . can be used to introduce a choice between a fixed
number of alternative branches, whereas the statement with x ∈ S expresses a choice among the values
in a set S. In particular, guarded commands can be expressed by combining either . . .or and await
statements. Channels are declared using the keyword fifo; messages will be received in the order in
which they are sent. The operation send(chan,expr) sends a message corresponding to the expression
expr on channel chan and the operation receive(chan,var) receives a message from channel chan and
stores it in the variable var.

An important concern when describing concurrent algorithms is to model the “grain of atomicity”,
i.e., which statements are assumed to execute without interleaving with statements of other processes.
PlusCal (and Distributed PlusCal) use statement labels to this effect: all statements appearing between
two labels are executed atomically.

As an example, Listing 2.1 shows a simple Distributed PlusCal algorithm that implements a ping-
pong protocol between two processes. The process Pong sends a message "Ping" on channel ping and
waits for a message "Pong" on channel pong before starting again from the beginning, while process
Ping proceeds symmetrically. The await statements are not really useful for this simple example, and
users would typically use while loops instead of low-level goto statements. The example is written in
this way in order to illustrate key aspects in the compilation strategy. The algorithm of Listing 2.1 intro-
duces single instances (with identifiers 0 and 1) of the two process types. Alternatively, a fixed number
of instances may be introduced by writing process (p \in S) where S must evaluate to a finite set. For
the purpose of compiling towards an executable typed language, we assume that channels and variables
are ascribed a type annotation (not shown in this listing) as defined by the Snowcat typechecker [KKT19]
and that each process instance is assigned a dedicated channel, referred to as its mailbox, the only one
through which it receives messages.

3 The Guarded PlusCal fragment

As mentioned in the previous section, the atomicity of statements (in a block) is a central concern when
describing concurrent algorithms. Blocking statements like await and receive are one source of com-
plexity when compiling interleaving blocks towards executable code. For example, an await statement
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--algorithm PingPong {
fifos ping, pong;

(* @mailbox: ping; *)
process (Ping = 0)

variable tmp1 = "";
{
rcv1: receive(ping, tmp1);

await tmp1 = "Ping";
goto pong;

pong: send(pong, "Pong");
goto rcv1;

}

(* @mailbox: pong; *)
process (Pong = 1)

variable tmp2 = "";
{
ping: send(ping, "Ping");

goto rcv2;
rcv2: receive(pong, tmp2);

await tmp2 = "Pong";
goto ping;

} }

Listing 2.1: Ping-pong algorithm in Distributed PlusCal

is executed only if the expression it contains evaluates to TRUE, in which case the control is passed to
the next statement and otherwise, the execution of the containing block is aborted and tried again later.
A direct implementation of such a behavior in executable code would require, in case of failure, rolling
back all changes performed from the beginning of the block until the await statement. Indeed, this is the
strategy employed in PGo, the compiler for Modular PlusCal, but provisioning for failure and potential
rollback introduces significant overhead at execution.

We restrict here to a fragment of Distributed PlusCal that we call Guarded PlusCal that imposes sev-
eral restrictions. First, Guarded PlusCal algorithms may contain process-local variables, but no global
variables other than channel declarations: processes communicate exclusively by message passing. Sec-
ond, a process receives messages only from a single channel, its mailbox1. Third and most importantly,
any receive and await statements must be placed at the top of their respective blocks. This restriction
by itself is not sufficient for avoiding rollbacks: for example, in the case of two receive operations, the
second one might block, requiring the first one to be undone. However, we will see in Section 4 that it is
a stepping stone for allowing us to avoid cancellation mechanisms built into the compiled program. Al-
though the constraints might appear quite restrictive, we believe that Distributed PlusCal algorithms can
generally be rewritten to satisfy them. For example, we checked that this is true for the algorithms con-
tained in the TLA+ examples repository [LKM+]. Our Ping-Pong example is already written in Guarded
PlusCal. For simplicity, we further assume that while statements are replaced with equivalent if and
goto statements, and that if statements are rewritten as guarded commands, using a combination of
either . . .or and await.

3.1 Syntax of Guarded PlusCal

As for Distributed PlusCal, a Guarded PlusCal algorithm is composed of a section containing decla-
rations (including the declaration of communication channels), and a section containing the different
processes. Each process consists of some local variable declarations followed by the definition of the
behavior of each of its threads, where each thread corresponds to a list of atomic blocks. Each block
groups all the guard statements at the beginning and contains a final goto statement at the end. Note that
there are no global variables in Guarded PlusCal; processes communicate exclusively through channels.

1Observe that channel declarations could therefore be omitted, and the process identity could be used instead of the mailbox
channel. We do not do this here so that Guarded PlusCal algorithms remain valid Distributed PlusCal algorithms.
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P ::= p ⋆ (x = e)∗ ⋆ ({(l : either B1 or . . . or Bn)
∗})∗ Process

B ::= G∗ ; E∗ ;goto l Atomic block
G ::= await e Precondition

| receive(c,x) Message reception
| with x = e | with x ∈ e Block-local binding

E ::= skip Inaction
| x := e Local variable assignment
| print e Local value output
| assert e Dynamic assertion
| send(c,e) Message sending

where l ∈ Label⊎ {Done} denotes labels, x,c ∈ Var denote (channel) variables and e denotes (non-
temporal) TLA+ expressions. Channels and variables can be indexed.

A process, identified by its identifier p2, consists of a declaration of local variables—each initial-
ized by an expression—and a list of threads, where each thread is defined as a sequence of labeled
non-deterministic choices of atomic blocks (as will be discussed in the next section, any of the alter-
native branches can be selected for execution). For the sake of simplicity, we write li : Bi instead of
li : either Bi when there is only one block. We denote by mailboxp the unique mailbox on which (the
threads of) process p can receive messages. For the algorithm in the Listing 2.1, the process identifiers
are respectively 0 and 1, and their mailboxes are respectively ping and pong.

An atomic block B (or simply block) is composed of three kinds of statements:

• guard statements G determine when the block is enabled, i.e. has a chance to be executed, and may
non-deterministically select values for some of the variables;

• execution statements E define the actual behavior of the block;

• a goto l statement indicates the next block to be executed (or none, if l is the reserved Done).

We consider S ::= G | E the set of statements (guards or execution statements).

3.2 Semantics of Guarded PlusCal

A state is a pair ⟨M,C⟩ where M is a mapping from variables to values and C is a mapping from channels
to sequences of values. The execution of a statement on a state produces a new state and the execution
of an atomic block results in a final state which also indicates the label of the next block to execute.
State = State⊥⊎State⊤ denotes the indexed family of all the states:

State⊥ = (Var ⇀ Value)× (Var ⇀ Value∗)

State⊤ = State⊥×Label

State⊤ represents execution states reached after a goto terminal statement, while State⊥ represents exe-
cution states obtained when executing the statements inside an atomic block. For any given σ ∈ State⊥,
we denote Mσ and Cσ its first and second projections respectively. M(r← v) denotes the mapping ob-
tained by replacing the value of variable r with v in M, and C(c← vs) denotes the mapping obtained by
replacing the sequence of values of channel c with vs in C.

To represent the actions performed by a process that are observable by other processes we consider
the set Trace of sequences of process events of the form out v (process output) or c!v (channel sending).

2We omit in the syntax the process name.
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The symbol ε denotes the empty trace, ∗ the concatenation of two traces and ≤ the prefix relation on
traces.

We follow the approach proposed in [CWWC24], and define the semantics of Guarded PlusCal
by two functions [[·]] and [[·]]⊥ describing respectively all the possible non-erroneous executions and all
executions leading to an error. The semantics of atomic blocks (and threads) in case of non-erroneous
executions is a set of triples ⟨σ , t,σ ′⟩ where σ ∈ State⊥ is the initial state, t ∈ Trace is the trace of events
produced by the statements in the block and σ ′ ∈ State⊤ is the final state. For statements, the semantics
is also a set of triples ⟨σ , t,σ ′⟩ but the state σ ′ ∈ State⊥ is not final.

We present below the semantics of the Guarded PlusCal constructs used in the rest of the paper; the
semantics of all the constructs is given in the appendix.

Semantics of (non-temporal) expressions. The expression language of TLA+ is very rich and ex-
pressive, but not all expressions have a defined meaning. For example, the expression 1∪ TRUE is a
well-formed expression of TLA+, but its meaning is not specified, and it is rejected by the model check-
ers TLC and Apalache.

We introduce the two reduction predicates M ⊢ e ⇓ v and M ⊢ e  that respectively describe when
an expression is meaningful (i.e. can be reduced to a normal form v, given a memory M) and when an
expression is meaningless (when e admits no normal form in a given memory M). The set Value of
normal forms consists of numerals, strings, booleans, sets, sequences, tuples, records, and functions.
Note that some expressions may not always be meaningful depending on the memory in which they are
reduced: for example the TLA+ expression x∪{TRUE} evaluates to {TRUE} if M(x) = {TRUE} but does
not evaluate to a value if M(x) = 0.

Semantics of guards. For an await statement, if the corresponding expression evaluates to TRUE, the
execution continues with no changes to the state and no impact on the trace. When the expression eval-
uation fails, the execution is aborted. For a receive statement, the first value of the channel (mapping)
is removed and assigned to the variable r. Such a statement never fails. For a with statement, the result
of evaluating the expression (or one of the elements if the result is a set) is assigned to the variable in the
memory. When the expression evaluation fails, the execution is aborted.

[[await e]] = {⟨σ ,ε,σ⟩ | σ ∈ State⊥∧Mσ ⊢ e ⇓ TRUE}
[[receive(c,r)]] = {⟨σ ,ε,⟨Mσ (r← v),Cσ (c← vs)⟩⟩ | σ ∈ State⊥∧Cσ (c) = v · vs}

[[with x = e]] = {⟨σ ,ε,⟨Mσ (x← v),Cσ ⟩⟩ | σ ∈ State⊥∧Mσ ⊢ e ⇓ v}
[[with x ∈ e]] = {⟨σ ,ε,⟨Mσ (x← v),Cσ ⟩⟩ | σ ∈ State⊥∧ v ∈ S ∧Mσ ⊢ e ⇓ S}

[[await e]]⊥ = {⟨σ ,ε⟩ | σ ∈ State⊥∧Mσ ⊢ e  }
[[receive(c,r)]]⊥ = /0

[[with x = e]]⊥ = {⟨σ ,ε⟩ | σ ∈ State⊥∧Mσ ⊢ e  }
[[with x ∈ e]]⊥ = {⟨σ ,ε⟩ | σ ∈ State⊥∧Mσ ⊢ e  }

Note that we have a blocking semantics for all the guards: there is no transition when the expression
in await evaluates to anything else than TRUE, when the channel in receive is empty, and when the
expression in with evaluates to an empty set.
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Semantics of execution statements. An assignment r := e updates the value of the variable r to the
value of the expression e and produces no trace event. If the evaluation of e fails so does the assignment.

[[r := e]] = {⟨σ ,ε,⟨Mσ (r← v),Cσ ⟩⟩ | σ ∈ State⊥∧Mσ ⊢ e ⇓ v}
[[r := e]]⊥ = {⟨σ ,ε⟩ | σ ∈ State⊥∧Mσ ⊢ e  }

An assert statement has no effect on the state and does not produce any trace event if the expres-
sion it contains evaluates to TRUE, otherwise the execution fails. The statements print, send and skip

behave as usually. In particular, successful executions of print and send produce trace events. The
formal semantics of all statements is given in the appendix.

Semantics of atomic blocks. Reducing an atomic block simply amounts to checking if it is enabled
(i.e. if all its guards are satisfied), and then executing all the statements following the guards as well as
the terminal goto statement. Given the (forward) composition defined by

R1 ◦2 R2 = {⟨s1, t1 ∗ t2,s3⟩ | ⟨s1, t1,s2⟩ ∈ R1∧⟨s2, t2,s3⟩ ∈ R2},

the semantics of a block is a set of triples of the form State⊥×Trace×State⊤ defined inductively by:

[[goto l]] = {⟨σ ,ε,⟨σ , l⟩⟩ | σ ∈ State⊥}
[[S ; B]] = [[S]]◦2 [[B]]

An atomic block aborts whenever one of its guards or statements aborts (goto never aborts).

Semantics of threads and processes. We define the semantics of threads as a set of triples State⊤×
Trace×State⊤, where the label in the first state indicates which block is allowed to be reduced, by

[[T ]] = {⟨⟨M,C, l⟩, t,σ ′⟩ | σ ′ ∈ State⊤∧⟨⟨M,C⟩, t,σ ′⟩ ∈
⋃

B∈T (l)

[[B]]}

[[T ]]⊥ = {⟨⟨M,C, l⟩, t⟩ | ⟨⟨M,C⟩, t⟩ ∈
⋃

B∈T (l)

[[B]]⊥}

where T (l) = {Bi | 1≤ i≤ n ∧ l : either B1 or . . . or Bn ∈ T} is the collection of blocks at label l in
the thread T . The semantics of threads is merely defined as the set of all the possible choices between
the enabled blocks at the given label l in the thread (in their respective memory), effectively modelling
the angelic non-determinism exhibited by an either statement in PlusCal.

The semantics of processes is then defined as the iteration of the composition of the semantics of
threads (in any order), starting from the initial configuration where the memory is initialized to the initial
value of local variables and each thread starts in its first block.

4 Towards compiling Guarded PlusCal into executable code

In this section, we describe the first pass of our compiler, from Guarded PlusCal to a restricted language
better suitable for compilation into executable code. The other passes have also been implemented but
not yet verified.
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4.1 General compiler correctness

We start by recalling some standard techniques used to prove compiler correctness, which we will then
apply in the following subsection. In the following, we consider two arbitrary languages Ls (the source
language) and Lt (the target language) whose semantics [CWWC24] are defined by the functions [[·]]
and [[·]]⊥ exhibiting all the possible (non-)erroneous executions in terms of tuples (σ , t,σ ′), respectively
(σ , t), with σ ,σ ′ language specific configurations and t observational traces. In the case of Guarded
PlusCal, the configurations are the states of the program and the traces are sequences of events that can
be observed, resulting from print and send statements. We also assume that the semantics of Ls and
Lt are related by a (matching) relation R between configurations of the two languages and that the target
language Lt has a well-founded measure | · | on its configurations.

Definition 4.1 (Behavior refinement [CWWC24]). Given two programs S ∈Ls and T ∈Lt , T refines
the behavior of S, denoted [[T ]] ⊑R [[S]], if for all configurations σs of Ls, σt , σ ′t of Lt and trace t such
that (σs,σt) ∈R and (σt , t,σ

′
t ) ∈ [[T ]], either

a. there exists a configuration σ ′s of Ls such that (σ ′s,σ
′
t ) ∈R and (σs, t,σ

′
s) ∈ [[S]], or

b. there exists a trace t0 ≤ t such that (σs, t0) ∈ [[S]]⊥, or

c. (σs,σ
′
t ) ∈R and t= ε and |σ ′t |< |σt |.

σs

σ ′s

σt

σ ′t

[[T ]]t

R

R

[[S]] t

σs σt

σ ′t 

[[T ]]t

R

[[S]]⊥ t0 ≤

σs σt

σ ′t|σ ′t |< |σt |

R

[[T ]]εRa. b. c.

Behavior refinement states that every (non-erroneous) behavior that T can exhibit is either a behavior
that can also be exhibited by S, or corresponds to a failure of S (perhaps for a shorter trace: T could have
performed some additional logging actions), or is an internal action that decreases the measure (and
therefore T cannot indefinitely perform such actions). Therefore, any execution of T that does not fail
corresponds to a successful execution of S or to an execution of S that fails at some point. Of course, the
second case cannot happen if S has been proved to be failure-free. Observe that nothing is required if T
fails and therefore the definition does not ensure completeness of the compiler.

Theorem 4.2 (Refinement of sequential composition). If both [[S]] ⊑R [[T ]] and [[U ]] ⊑R [[V ]] hold, then
[[S ;U ]]⊑R [[T ;V ]] holds as well.

A compiler C : Ls ⇀ Lt , i.e. a partial function from Ls to Lt , is said to be partially correct if every
program we obtain as output of C refines the behavior of the original program:

Definition 4.3 (Compiler partial correctness). C preserves the semantics of Ls iff for all program P∈Ls

such that C (P) is defined, [[C (P)]]⊑R [[P]].

Proving full compiler partial correctness is non-trivial, but is more easily tackled by considering
each pass as a separate compiler. Each pass can then be proven partially correct separately, and all the
correctness results can be tied back together by simple composition of partial functions and semantics.

Theorem 4.4 (Composition of partially correct compilers). Given two compilers C1 : L1 ⇀ L2 and
C2 : L2 ⇀ L3 that respectively preserve the semantics of L1 and L2, their functional composition
C2 ◦C1 : L1 ⇀ L3 also preserves the semantics of L1.
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4.2 From Guarded PlusCal to Network PlusCal

Compilation of Distributed PlusCal specifications into executable programs is a complex task essentially
because of the atomicity of block execution combined with the blocking statements await and receive.
A naive compilation of receive(mailboxp,x) into an executable language featuring asynchronous chan-
nels (e.g. into Go’s x := <-mailboxp) can lead to behaviors that are not consistent with the semantics
of Distributed PlusCal.

Consider the block receive(mailboxp,x) ; await x > 50 ; goto Done. When compiled naively by
simply replacing the first statement with x := <-mailboxp, the corresponding program would receive
a value from a channel mailboxp, without actually knowing if this value is greater than 50. Note that in
Go it is not possible to peek at the channel’s content without actually receiving the message. To preserve
the intended semantics of PlusCal, we should roll back and replace the received value back as the first
value in the channel, which is not possible in Go.

We address this problem by performing a first compilation pass CG→N that essentially replaces all
receive guards with await statements. We call Network PlusCal the restriction of Guarded PlusCal
where all receive guards have been removed. Since every process p receives only from a single mail-
box, we can use a new (fresh) variable inboxp in the local process state which handles the temporary
buffering of a received message, and use it to encode the receive behavior. Continuing the previous
example, we replace the first statements of the block by await Len(inboxp) > 0 ; x := Head(inboxp) ;
inboxp := Tail(inboxp) ; await x > 50. However, this introduces an assignment preceding an await

guard, and the statements must be reordered to obtain await Len(inboxp)> 0 ;await Head(inboxp)>
50 ; x := Head(inboxp) ; inboxp := Tail(inboxp). Additionally, we introduce a separate thread to han-
dle the transfer of messages from the mailbox to the local variable inboxp. These transformations are
performed by rewrite rules, as defined below.

The compiler CG→N . The goal of this compiler pass is to get rid of any potential blocking that may
be incurred by receive guards by using an explicitly handled sequence inboxp; channel reception then
becomes indexing into inboxp if that sequence is nonempty.

The compilation of receive statements is done by normalizing w.r.t. the one rule rewrite system E :

p ⋆V ∗ ⋆ T ∗1 {S∗1 ;receive(mailboxp,x) ; S∗2 ;goto l ;}T ∗2
=⇒E

p ⋆V ∗, inboxp = ⟨⟩ ⋆ T ∗1 {S∗1 ;await Len(inboxp)> 0 ; x := Head(inboxp) ; inboxp := Tail(inboxp);
S∗2 ;goto l ;}T ∗2

where V ∗, S∗ and T ∗ stand for arbitrary sequences of variables, statements and threads, respectively.
The standard operators Len, Head and Tail on TLA+ sequences denote the number of elements in the
sequence, the first element of the sequence (provided it is nonempty) and the sequence without its first
element, and ⟨⟩ denotes the empty sequence.

As explained above, the compilation of receive guards introduces new assignments that need to be
reordered in order to produce a valid Network PlusCal block. This reordering is done by replacing the
variables involved in the newly introduced assignments with the corresponding expressions. Since these
expressions only depend on the freshly generated variables inboxp, no special care needs to be taken in
the replacement process to avoid possible variable captures. This is done by normalizing w.r.t. the rewrite
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system S :

S∗1 ; x := e1 ;await e2 ; S∗2 ;goto l ; =⇒S S∗1 ;await e2[e1/x] ; x := e1 ; S∗2 ;goto l ;

S∗1 ; x := e1 ;with y = e2 ; S∗2 ;goto l ; =⇒S S∗1 ;with y = e2[e1/x] ; x := e1 ; S∗2 ;goto l ;

S∗1 ; x := e1 ;with y ∈ e2 ; S∗2 ;goto l ; =⇒S S∗1 ;with y ∈ e2[e1/x] ; x := e1 ; S∗2 ;goto l ;

Because we are replacing receive guards with indexing into a new local variable inboxp, we also need
to insert a separate thread that handles the transfer of messages from mailboxp to that variable. This
is accomplished by applying once the following rewrite rule on all processes that have an associated
mailbox:

p ⋆V ∗ ⋆ T ∗

=⇒M

p ⋆V ∗, tmp = v ⋆ T ∗{rxp : receive(mailboxp, tmp) ; inboxp := Append(inboxp, tmp) ;goto rxp ;}

where tmp is a fresh process-local variable that is initialized to some value v of the same type as the
type contained in the mailbox, and Append is the operator from the TLA+ standard library that denotes
insertion of a value at the end of a sequence. Note that the choice of the initial value v does not matter
because tmp will always be overwritten before its first use.

We then define the compilation process by CG→N = ↓E ◦↓S ◦=⇒M with ↓R denoting the reduction
to normal form w.r.t. a rewrite system R. The result of applying our compiler CG→N to the example of
2.1 is presented in Listing 4.1.

--algorithm PingPong {
fifos ping, pong;

process (Ping = 0)
variables

tmp1 = "", rx_inbox_Ping = "",
inbox_Ping = <<>>;

{
rcv1: await Len(inbox_Ping) > 0;

await Head(inbox_Ping) = "Ping";
tmp1 := Head(inbox_Ping);
inbox_Ping := Tail(inbox_Ping);
goto pong;

pong: send(pong, "Pong");
goto rcv1;

}
{
rx1: receive(ping, rx_inbox_Ping);

inbox_Ping :=
Append(inbox_Ping, rx_inbox_Ping);

goto rx;
}

process (Pong = 1)
variables

tmp2 = "", rx_inbox_Pong = "",
inbox_Pong = <<>>;

{
ping: send(ping, "Ping");

goto rcv2;
rcv2: await Len(inbox_Pong) > 0;

await Head(inbox_Pong) = "Pong";
tmp2 := Head(inbox_Pong);
inbox_Pong := Tail(inbox_Pong);
goto ping;

}
{
rx2: receive(pong, rx_inbox_Pong);

inbox_Pong :=
Append(inbox_Pong, rx_inbox_Pong);

goto rx;
} }

Listing 4.1: Ping-pong algorithm in Network PlusCal

On the partial correctness of CG→N . The different languages involved in the compilation (Distributed
PlusCal, Guarded PlusCal, Network PlusCal) are specified as types in the Lean proof assistant, and the
rewrite rules defining the passes are implemented as Lean functions. Because in Lean, functions must
terminate and respect their types, each transformation step is terminating, and the resulting normal forms
contain only well-formed Network PlusCal blocks.
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Theorem 4.5 (Termination). CG→N is terminating and the produced normal forms are valid Network
PlusCal processes.

Concerning the correctness of this compilation pass, since the semantics of processes and threads
does not change between Guarded PlusCal and Network PlusCal, it suffices to show that the compilation
of each atomic block is correct. To establish this property, we first define the relation ⟨Ms,Cs⟩ ∼mailboxp

⟨Mt ,Ct⟩, which connects configurations of Guarded PlusCal and Network PlusCal in the presence of a
mailbox:

⟨Ms,Cs⟩ ∼mailboxp ⟨Mt ,Ct⟩ ⇐⇒
∧

∀x ̸= inboxp. Ms(x) = Mt(x),
∀c ̸= mailboxp. Cs(c) =Ct(c),
Cs(mailboxp) = Mt(inboxp)++Ct(mailboxp)

where ++ denotes sequence concatenation in TLA+. In words, the values of variables other than the newly
added variable inboxp and of channels other than mailboxp must match in the configurations of the source
and target programs. Moreover, the content of mailboxp in the source configuration must correspond to
the concatenation of the sequences contained in inboxp and in mailboxp in the target configuration, since
some messages from the mailbox may already have been transferred to the local variable inboxp. In
particular, in the absence of a mailbox, the source and target configurations must match exactly.

The semantics of all languages involved in the compilation process have been defined in Lean and the
partial correctness of each transformation step has been mechanically established. The partial correctness
of the compilation pass CG→N is then obtained by composition of these results.
Theorem 4.6 (Partial correctness of CG→N). For any Guarded PlusCal process P, we have that
[[CG→N(P)]]⊑∼mailboxp

[[P]].

5 Conclusion

We have formally defined the semantics of the Distributed PlusCal specification language, an extension
of PlusCal featuring processes, threads, and message-passing communications, in Lean 4, and we have
started the development of a compiler into an executable language.

The first pass of the compiler, which transforms programs written in the Guarded PlusCal fragment
of Distributed PlusCal into the Network PlusCal fragment by separating await and receive statements
through the introduction of a helper thread and reordering statements if necessary, has been specified
using rewrite rules and implemented in Lean 4. The rigorous description of Guarded PlusCal and Net-
work PlusCal, using the type system of Lean 4, allows us to automatically establish the termination of
the translation process and to guarantee that the resulting programs have the expected shape. We have
also used the Lean 4 proof assistant to mechanically verify the correctness of the translation process.

The next step concerns the translation into Go programs. The syntax of Go has already been defined
in Lean 4, and the translation from Network PlusCal into Go has been implemented. However, we
will also need to define a formal semantics of Go in Lean 4 in order to state the correctness of the
compilation. The preliminary compilation pass from Guarded PlusCal into Network PlusCal significantly
simplifies the compilation into executable code since each block begins with a sequence of (side effect
free) guards that must all be satisfied before changing the process-local environment. This allows us
to avoid cancellation mechanisms (such as rollbacks in transactions) when compiling a block, because
the enabledness of a block is completely determined by its guards. However, we still need to introduce
synchronization mechanisms (such as locks) in order to prevent data races between multiple concurrently
executing blocks. As before, we obtain for free the termination of the pass as well as the well-formedness
of the resulting Go programs, but the correctness of the translation still needs to be established.
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Appendix

A Normal forms of TLA+ expressions

We define the set Value of all normal forms v by:

v ::= n Number literal
| ”s” String literal
| TRUE | FALSE Boolean literal
| {v1, . . . ,vn} Set literal
| ⟨v1, . . . ,vn⟩ Sequence/tuple literal
| [x1 : v1, . . . ,xn : vn] Record literal
| v1 :> v2 @@ . . .@@ vn−1 :> vn Function literal
| LAMBDA x1 . . .xn. e Operator literal

B Definition of the semantics of Guarded PlusCal

Complete semantics of execution statements A skip statement has no effect on the state and does
not produce any trace event. A print statement produces an output event containing the value of the
expression it contains. An assert statement has no effect on the state and does not produce any trace
event if the expression it contains evaluates to TRUE, otherwise it aborts the execution. A send statement
appends the value of the expression it contains to the sequence of values of the channel it sends to, and
produces a sending event. An assignment statement r := e updates the value of the variable r to the
value of the expression e and produces no trace event. A skip could not lead to a failure, all the other
statements lead to a failure if the corresponding expression does so and in this case, no trace event is
produced.

[[skip]] = {⟨σ ,ε,σ⟩ | σ ∈ State⊥}
[[print e]] = {⟨σ ,out v,σ⟩ | σ ∈ State⊥∧Mσ ⊢ e ⇓ v}

[[assert e]] = {⟨σ ,ε,σ⟩ | σ ∈ State⊥∧Mσ ⊢ e ⇓ TRUE}
[[send(c,e)]] = {⟨σ ,c!v,⟨Mσ ,Cσ (c← vs · v)⟩⟩ | σ ∈ State⊥∧Cσ (c) = vs∧Mσ ⊢ e ⇓ v}

[[r := e]] = {⟨σ ,ε,⟨Mσ (r← v),Cσ ⟩⟩ | σ ∈ State⊥∧Mσ ⊢ e ⇓ v}

[[skip]]⊥ = /0

[[print e]]⊥ = {⟨σ ,ε⟩ | σ ∈ State⊥∧Mσ ⊢ e  }
[[assert e]]⊥ = {⟨σ ,ε⟩ | σ ∈ State⊥∧ (Mσ ⊢ e  ∨Mσ ⊢ e ⇓ FALSE)}
[[send(c,e)]]⊥ = {⟨σ ,ε⟩ | σ ∈ State⊥∧Mσ ⊢ e  }

[[r := e]]⊥ = {⟨σ ,ε⟩ | σ ∈ State⊥∧Mσ ⊢ e  }

Complete semantics of atomic blocks Let the (forward) composition of semantics sets (◦2) : (State×
Trace×State)× (State×Trace×State)→ State×Trace×State defined by

R1 ◦2 R2 = {⟨s1, t1 ∗ t2,s3⟩ | ⟨s1, t1,s2⟩ ∈ R1∧⟨s2, t2,s3⟩ ∈ R2},
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the semantics of an atomic block is a set of triples of the form State⊥×Trace×State⊤ defined inductively
by:

[[goto l]] = {⟨σ ,ε,⟨σ , l⟩⟩ | σ ∈ State⊥}
[[S ; B]] = [[S]]◦2 [[B]]

Let the (forward) composition (◦1) : (State×Trace× State)× (State×Trace)→ State×Trace defined
by

R◦1 X = {⟨s1, t1 ∗ t2⟩ | (s1, t1,s2) ∈ R∧ (s2, t2) ∈ X},

the aborting semantics of an atomic block is then defined inductively by:

[[goto l]]⊥ = /0

[[S ; B]]⊥ = [[S]]⊥∪ ([[S]]◦1 [[B]]⊥)

Reducing an atomic block simply amounts to checking if it is enabled (i.e. if all its guards are satis-
fied), and then executing all the statements following the guards as well as the terminal goto statement.
An atomic block aborts whenever one of its guards or statements aborts (goto never aborts).
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In proving constrained equations by rewriting induction (RI, for short), the Expand rule which is
one of the main inference rules of RI makes an orientable constrained equation a constrained rewrite
rule, called an IH rewrite rule, which can be used as an induction hypothesis. Such an IH rewrite
rule may be applied to constrained equations in order to simplify them. The broader the scope of
the application of IH rewrite rules, the greater the possibilities for proving constrained equations. In
this paper, we modify the Expand rule of RI in order to make the scope of the application of the IH
rewrite rule broader. To be more precise, in orienting a constrained equation as an IH rewrite rule,
if there already exists an IH rewrite rule having the same left- and right-hand sides, then we disjunct
the constraint of the orienting equation with the constraint of the existing IH rewrite rule; otherwise,
the orienting equation is added to the set of IH rewrite rules as a new IH rewrite rule. We show that
this modification does not lose the proof power of RI.

1 Introduction

Recently, approaches to program verification by means of logically constrained term rewrite systems
(LCTRSs, for short) [13] are well investigated [6, 19, 4, 16, 7, 8, 11, 9, 10, 12, 15]. LCTRSs are
extensions of term rewrite systems (TRSs, for short) by allowing rewrite rules to have guard constraints
which are evaluated under equipped built-in theories. LCTRSs combine classic term rewriting (see,
e.g., [1, 17]) with built-in data types and constraints from user-specified first-order theories, specifically
those supported by modern Satisfiability Modulo Theories (SMT) solvers (cf. [2, 3]). This allows for a
high expressivity that is useful for representing many programming language constructs directly, together
with robust tool support, e.g., the tool Ctrl [14], for automated reasoning. For instance, equivalence
checking by means of LCTRSs is useful to ensure the correctness of terminating functions (cf. [6]). Due
to these features, LCTRSs are known to be useful computational models of not only functional but also
imperative programs.

In previous work [6, 7, 8, 11], as a verification technique, rewriting induction (RI, for short) [18, 6]
is used to prove equivalence of two programs by reducing equivalence to an inductive theorem which
is a valid constrained equation of terms w.r.t. the reduction of the corresponding LCTRS. In the field of
term rewriting, RI is one of the most powerful principles to prove equations to be inductive theorems of
rewrite systems. RI has been extended to several kinds of rewrite systems, including LCTRSs.

RI consists of inference rules that are applied to RI states (E ,H), where E is a finite set of (con-
strained) equations and H is a (constrained) rewrite system. The application of rewrite rules in H corre-
sponds to the application of induction hypotheses to subsequent RI states. We call rules in H IH rewrite
rules. An RI proof of a finite set E0 of (constrained) equations w.r.t. a rewrite system R is a sequence
of RI states, which starts with (E0, /0), is obtained by the application of inference rules, and ends with

*Graduated in March 2025.
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Program 1: a C program to compute summation.
1 int sumx(int n) {
2 if( n == 0 )
3 return 0;
4 else
5 return n + sumx(n + (n > 0 ? -1 : 1));
6 }

( /0,H′) for some rewrite system H′. If we find an RI proof of E0 w.r.t. R, then all constrained equations
in E0 are proved to be inductive theorems of R. Ctrl [14]1—a tool to automatically prove properties of
LCTRSs—is one of the known LCTRS tools for proving constrained equations to be inductive theorems
of LCTRSs (cf. [6]).

In proving constrained equations to be inductive theorems of a given constrained rewrite system,
constrained equations are sometimes decomposed to some constrained equations by disjuctively splitting
constraints. To be more precise, we split a constrained equation s ≈ t [φ1 ∨ ·· · ∨ φn] to n constrained
equations s ≈ t [φ1], . . . ,s ≈ t [φn]. RI for constrained rewrite systems has an inference rule for such
splitting of constrained equations, which is a natural and useful way in proving equational claims.

In proving constrained equations by RI, the EXPAND rule which is one of the main inference rules
of RI makes an orientable (constrained) equation an IH rewrite rule. To be more precise, for an RI state
(E ⊎{s≈ t [φ ]},H) of an LCTRS R, if R∪H∪{s→ t [φ ]} is terminating, then the EXPAND rule induces
an RI state of the form (E ∪E ′,H∪{s → t [φ ]}) for some set E ′ of constrained equations. Such an IH
rewrite rule may be applied to constrained equations in subsequent RI states in order to simplify them.
The broader the scope of the application of IH rewrite rules, the greater the possibilities for proving
constrained equations.

Example 1.1 Let us consider Program 1 written in the C language, which is considered a SIMP+ pro-
gram. SIMP+ [7] is an extension of a small imperative language, so-called SIMP [5], to global variables
and function calls. Unlike the C language, the range of variables with type int is not the 32-bit integers
but the integers. Given a non-negative integer n, the function sumx returns the summation from 0 to n,
i.e., sumx(n) = ∑

n
i=1 i. In addition, given a negative integer n′, sumx return the summation from n′ to 0,

i.e., sumx(n′) = ∑
−1
i=n′ i. The program is transformed into the following LCTRS:

R1 =


sumx(n)→0 [n = 0 ]
sumx(n)→n+ sumx(n+one) [n > 0∧one =−1 ]
sumx(n)→n+ sumx(n+one) [n < 0∧one = 1 ]


The above constrained equation represents the following conditional equational claim:

For any integer n, if n ≥ 0, then sumx(n) = n(n+1)
2 , and otherwise (i.e., n < 0), sumx(n) =−n(n−1)

2

To prove the correctness of sumx, let us try to prove the following constrained equation to be an inductive
theorem of R1:

sumx(n)≈ m [(n ≥ 0∧m = (n× (n+1))div2)∨ (n < 0∧m =−((n× (n−1))div2))] (1)

1http://cl-informatik.uibk.ac.at/software/ctrl/
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Ctrl succeeds in automatically prove the above constrained equation (1). Let us now consider to split the
above equation regarding ∨, i.e., split to the following two constrained equations:

sumx(n)≈ m [n ≥ 0∧m = (n× (n+1))div2] (2)

sumx(n)≈ m [n < 0∧m =−((n× (n−1))div2)] (3)

Ctrl succeeds in automatically proving the constrained equation (2), but fails to prove (3) in the automatic
mode. Note that we can succeed in manually proving (3) by Ctrl. To prove (3), as for (2), let us first
apply EXPAND to ({(3)}, /0), obtaining the following RI state:

(


0≈m [n = 0∧Ψm,n]

n+ sumx(n+one)≈m [n > 0∧one =−1∧Ψm,n]
n+ sumx(n+one)≈m [n < 0∧one = 1∧Ψm,n]

 ,{sumx(n)→ m [Ψm,n]})

where Ψm,n = (n < 0∧m = −((n× (n−1))div2)). The first equation can be deleted because m = 0 is
valid under the constraint n = 0∧Ψm,n. The second equation can be deleted because the constraint is
unsatisfiable. The third equation can be simplified by replacing n+ one with a fresh variable y and by
conjuncting y = n+one with the constraint. Thus, we obtain the following RI state:

({n+ sumx(y)≈ m [n < 0∧one = 1∧Ψm,n ∧ y = n+one]},{sumx(n)→ m [Ψm,n]})

Unfortunately, in contrast to (2), we cannot further simplify the above equation via R1 or the IH rewrite
rule sumx(n) → m [Ψm,n]. By focusing sumx(y) in the left-hand side, we can apply EXPAND to the
equation and then all the derived equations can automatically be proved by Ctrl.

In this paper, we modify the EXPAND rule of RI for LCTRSs in order to make the scope of the
application of IH rewrite rules broader. Roughly speaking, in orienting a constrained equation as an IH
rewrite rule, if there already exists an IH rewrite rule having the same left- and right-hand sides, then
we disjunct the constraint of the orienting equation with the constraint of the existing IH rewrite rule;
otherwise, the orienting equation is added to the set of IH rewrite rules as a new IH rewrite rule. To
be more precise, for an RI state (E ⊎ {s ≈ t [φ ]},H) w.r.t. an LCTRS R, if R∪H∪{s → t [φ ]} is
terminating, then our new EXPAND rule induces an RI state of the form (E ∪E ′,H′) for some set E ′ of
constrained equations, where

• if H includes s → t [ψ] with Var(ψ) = Var(φ), then H′ = (H\{s → t [ψ]})∪{s → t [ψ ∨φ ]},
and

• otherwise, H′ =H∪{s → t [φ ]}.

Since constraints of constrained equations are guard conditions, s ≈ t [φ ] can be considered φ ⇒ (s =
t). Viewed in this light, having the induction hypotheses s≈ t [φ1] and s≈ t [φ2] is theoretically equivalent
to having the induction hypothesis s ≈ t [φ1 ∨ φ2]. However, induction hypotheses are represented as
constrained rewrite rules in the RI setting, and they are applied to constrained equations. From the
viewpoint of applying constrained rewrite rules, having the induction hypothesis s ≈ t [φ1 ∨ φ2] as a
constrained rewrite rule is more powerful than having the induction hypotheses s ≈ t [φ1] and s ≈ t [φ2]
as constrained rewrite rules. To be more precise, we have that →{s→t [φ1∨φ2]} ⊇→{s→t [φ1], s→t [φ2]}, but
the other inclusion does not hold in general. We show that the modification of EXPAND does not lose the
proof power of RI.
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Example 1.2 Let us consider R1 and constrained equations (2) and (3) in Example 1.1 again. Applying
our new EXPAND rule to ({(2),(3)}, /0) regarding (2), we obtain the following RI state:

(


0≈m [n = 0∧Φm,n]

n+ sumx(n+one)≈m [n > 0∧one =−1∧Φm,n]
n+ sumx(n+one)≈m [n < 0∧one = 1∧Φm,n]

(3) sumx(n)≈m [Ψm,n]

 ,{sumx(n)→ m [Φm,n]})

where Φm,n = (n ≥ 0∧m = (n× (n+1))div2). The first to third equations are proved by the application
of some RI inference rules, obtaining the following RI state:

({sumx(n)≈ m [Ψm,n]},{sumx(n)→ m [Φm,n]})

Then, R1 ∪{sumx(n) → m [Φm,n], sumx(n) → m [Ψm,n]} is terminating, and thus we apply our new
EXPAND rule to the above RI state. Unlike the original EXPAND rule, we merge sumx(n) → m [Φm,n]
and sumx(n)→ m [Ψm,n] as a single rule, obtaining the following RI state:

(


0≈m [n = 0∧Ψm,n]

n+ sumx(n+one)≈m [n > 0∧one =−1∧Ψm,n]
n+ sumx(n+one)≈m [n < 0∧one = 1∧Ψm,n]

,{sumx(n)→m [Φm,n ∨Ψm,n]})

As in Example 1.1, the first and second equations can be deleted, and the third can be simplified:

({n+ sumx(y)≈m [n < 0∧one = 1∧Ψm,n ∧ y = n+one]},{sumx(n)→m [Φm,n ∨Ψm,n]})

The equation above can be simplified to the following one by the IH rewrite rule in the RI state:

n+m′ ≈ m [n < 0∧one = 1∧Ψm,n ∧ y = n+one∧ (Φm′,y ∨Ψm′,y)]

By conjuncting the negation of n+m′ = m with the constraint part, an RI inference rule (EQ-DELETE

in Section 3) transforms the above equation into the following one:

n+m′ ≈ m [n < 0∧one = 1∧Ψm,n ∧ y = n+one∧ (Φm′,y ∨Ψm′,y)∧n+m′ ̸= m]

The constraint of the above equation is unsatisfiable, and thus the above equation is deleted. Therefore,
using our new EXPAND twice, we succeed in proving both (2) and (3) to be inductive theorems of R1.
Note that to prove (2) and (3), we used the original EXPAND three times in Example 1.1.

2 Preliminaries

In this section, we briefly recall LCTRSs [13, 6]. Familiarity with basic notions and notations on term
rewriting [1, 17] is assumed.

To define an LCTRS [13, 6] over an S-sorted signature Σ, we consider the following sorts, signatures,
mappings, and constants: Theory sorts in Stheory and term sorts in Sterm such that S = Stheory ⊎Sterm; a
theory signature Σtheory and a term signature Σterms such that Σ = Σtheory ∪Σterms and ι1, . . . , ιn, ι ∈ Stheory
for any symbol f : ι1 × ·· · × ιn → ι ∈ Σtheory; a mapping I that assigns to each theory sort ι a (non-
empty) set Aι , so-called the universe of ι (i.e., I(ι) = Aι ); a mapping J , so-called an interpretation
for Σtheory, that assigns to each function symbol f : ι1 ×·· ·× ιn ⇒ ι ∈ Σtheory a function fJ in I(ι1)×
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· · ·×I(ιn) → I(ι) (i.e., J ( f ) = fJ ); a set Valι ⊆ Σtheory of value-constants a : ι for each theory sort
ι such that J gives a bijection from Valι to I(ι) (= Aι ). We denote

⋃
ι∈Stheory

Valι by Val. Note that
Val ⊆ Σtheory. For readability, we may not distinguish Valι and I(ι) (=Aι ), i.e., for each v ∈ Valι , v and
J (v) may be identified. We require that Σterms ∩Σtheory ⊆ Val. Symbols in Σtheory \Val are calculation
symbols, for which we may use infix notation. A term in T (Σtheory,V) is called a theory term, where V
is a (countably infinite) set of variables. We define the interpretation [[ · ]]J of ground theory terms as
[[ f (s1, . . . ,sn)]]J = J ( f )([[s1]]J , . . . , [[sn]]J ). Note that for every ground theory term s, there is a unique
value-constant c such that [[s]]J = [[c]]J .

We typically choose a theory signature Stheory such that Stheory ⊇ Score = {bool}, Valbool = {true,
false : bool}, Σtheory ⊇ Σcore = Valbool ∪{∧,∨,⇒,⇔ : bool×bool ⇒ bool, ¬ : bool ⇒ bool}∪{=ι , ̸=ι :
ι × ι ⇒ bool | ι ∈ Stheory}, I(bool) = {⊤,⊥}, and J interprets these symbols as expected: J (true) =⊤
and J (false) = ⊥. We omit the sort subscripts ι from =ι and ̸=ι when they are clear from the context.
A theory term with sort bool is called a constraint. A substitution γ which is a sort-preserving mapping
from T (Σ,V) to T (Σ,V) is said to respect a constraint φ if xγ ∈ Val for all x ∈ Var(φ) and [[φγ]]J =⊤,
where Var(φ) denotes the set of variables appearing in φ . A constraint φ is said to be valid (satisfiable,
resp.) if [[φγ]] =⊤ for any (some, resp.) substitution γ respecting φ .

A constrained rewrite rule is a triple ℓ → r [ϕ] such that ℓ and r are terms of the same sort, ϕ is a
constraint, and ℓ is not a theory term (i.e., not a variable). If ϕ = true, then we may write ℓ → r. We
define LVar(ℓ→ r [ϕ]) as Var(ϕ)∪ (Var(r) \Var(ℓ)), the set of logical variables in ℓ→ r [ϕ] which
are variables instantiated with values in rewriting terms. We say that a substitution γ respects ℓ→ r [ϕ] if
γ(x) ∈ Val for all x ∈LVar(ℓ→ r [ϕ]) and [[ϕγ]]J =⊤. Regarding the signature of R, we denote the set
{ f (x1, . . . ,xn)→ y [y = f (x1, . . . ,xn)] | f ∈ Σtheory \Val, x1, . . . ,xn,y ∈ V are pairwise distinct} by Rcalc.
The elements of Rcalc are called calculation rules and we often deal with them as constrained rewrite
rules even though their left-hand sides are theory terms. The rewrite relation →R is a binary relation
over terms, defined as follows: For a term s, s[ℓγ]p →R s[rγ]p if and only if ℓ→ r [ϕ] ∈R∪Rcalc and γ

respects ℓ→ r [ϕ]. We may say that the reduction occurs at position p and may write →p,R or →p,ℓ→r [ϕ]

instead of →R. A reduction step with Rcalc is called a calculation. A logically constrained term rewrite
system (LCTRS, for short) is defined as an abstract reduction system (T (Σ,V),→R), simply denoted by
R, where R is a set of constrained rewrite rules. An LCTRS is usually given by supplying Σ, R, and an
informal description of I and J if these are not clear from the context.

The standard integer signature Σint is Σcore ∪{+,−,×,exp,div,mod : int× int ⇒ int}∪{≥,> : int×
int ⇒ bool}∪Valint where Stheory ⊇ {int,bool}, Valint = {n | n ∈ Z}, I(int) = Z, and J (n) = n for any
n ∈ Z—we use n (in sans-serif font) as the value-constant for n ∈ Z (in math font). We define J in a
natural way. An LCTRS over a signature Σ ⊇ Σint with Σtheory = Σint is called an integer LCTRS.

Example 2.1 R1 is an integer LCTRS. We have, e.g., the following reduction of R1: sumx(10) →R1

10+ sumx(10+(−1))→R1 10+ sumx(9)→R1 10+(9+ sumx(9+(−1)))→R1 · · · →R1 55.

A function symbol f is called a defined symbol of R if there exists a rule f (ℓ1, . . . , ℓn)→ r [ϕ] ∈R∪
Rcalc; non-defined elements of Σtheory are called constructors of R. Note that all values are constructors
of R. We denote the sets of defined symbols and constructors of R by DR and CR, respectively: DR =
{ f | f (ℓ1, . . . , ℓn)→ r [ϕ] ∈R∪Rcalc} and CR = Σ\DR. A CR-term in T (CR,V) is called a constructor
term of R. A term of the form f (t1, . . . , tn) with f ∈ DR and constructor terms t1, . . . , tn is called basic.
We call R a constructor system if the left-hand side of each rule ℓ → r [ϕ] ∈ R is basic. For any
x ∈ Dom(γ), if γ(x) (ground) constructor term, then γ is called (ground) constructor substitution. An
LCTRS R is called quasi-reducible if every ground basic term is a redex of R.
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Finally, we define constrained rewriting [13, 6]. A constrained term is a pair s [φ ] of a term s and a
constraint φ . The set of instances of s w.r.t. substitutions respecting φ is denoted by I (s [φ ]): I (s [φ ]) =
{sγ | γ is a substitution respecting φ}. We say that two constrained terms s [φ ] and t [ψ] are equivalent,
written as s [φ ] ∼ t [ψ], if both of the following hold: for any substitution γ respecting φ , there exists a
substitution δ such that δ respects ψ and sγ = tδ , and vice versa. Note that s [φ ] ∼ t [ψ] if and only if
I (s [φ ]) = I (t [ψ]) [6]. We define the constrained base-rewriting →base,R of an LCTRS R as follows:
s [φ ]→base,R t [ψ] if and only if there exists a freshly-renamed2 rule ℓ→ r [ϕ] ∈ R∪Rcalc, a position p
of s, and a substitution γ such that Dom(γ)⊆Var(ℓ,r,ϕ), s|p = ℓγ , t = s[rγ]p, ψ = φ , xγ ∈ Val∪Var(φ)
for any variable x ∈ LVar(ℓ→ r [ϕ]), and (φ ⇒ ϕγ) is valid. We define the constrained rewriting ⇀R
as ∼ ·→base,R · ∼. When we make the applied position p and rule ℓ → r [ϕ] explicit, we may write
→base,p,R or →base,p,ℓ→r [ϕ] for →base,R, and ⇀p,R or ⇀p,ℓ→r [ϕ] for ⇀R.

3 Constrained Rewriting Induction

In this section, we recall constrained rewriting induction [6] which is rewriting induction for LCTRSs.
In the rest of this paper, the abbreviation “RI” stands for “constrained rewriting induction”.

A constrained equation s ≈ t [φ ] is called an inductive theorem of a terminating and quasi-reducible
LCTRS R if sγ ↔∗

R tγ for every ground constructor substitution γ such that Dom(γ)⊇ Var(s, t,φ) and
γ respects φ . By definition, an equation s ≈ t [φ ] is trivially an inductive theorem of R if s = t or φ is not
satisfiable.

We do not distinguish the left- and right-hand sides of ≈ (i.e., ≈ is symmetric), and thus we do not
distinguish s ≈ t [φ ] and t ≈ s [φ ]. The notation s ≃ t [φ ] denotes s ≈ t [φ ] or t ≈ s [φ ]. In other words,
s ≃ t [φ ] specifies an equation with a constraint φ such that one side of the equation is s and the other is t.
In applying ⇀ to constrained equations, we consider ≈ a binary constructor which is not commutative.

RI comprises some inference rules over RI states of the form (E ,H), where E is a finite set of
equations and H is an LCTRS. For an RI state (E ⊎{s ≃ t [φ ]},H), the inference rules induce another RI
state of the form (E ∪E ′,H′) such that H⊆H′. The main fundamental inference rules of RI for LCTRSs
are EXPAND, CASE, SIMPLIFY, DELETE, and EQ-DELETE [6]:

EXPAND

(E⊎{s≃ t [φ ]},H)⊢RI (E∪ExpdR(p,s, t,φ),H∪{s→ t [φ ]}) if R∪H∪{s → t [φ ]} is terminating

where s|p is basic for some position p of s, and ExpdR(p,s, t,φ) = {s′ ≈ t ′ [ψ] | ℓ → r [ϕ] is a
freshly renamed variant of a rule in R, γ is a most general unifier of s|p and ℓ, Ran(γ|Var(φ ,ϕ))⊆
Val ∪V , (φ ∧ϕ)γ is satisfiable, (sγ ≈ tγ [(φ ∧ϕ)γ])⇀1.p,ℓ→r [ϕ] (s′ ≈ t ′ [ψ]) }.

CASE

(E ⊎{s ≃ t [φ ]},H) ⊢RI (E ∪ExpdR(p,s, t,φ),H})

where s|p is basic for some position p of s.

SIMPLIFY

(E ⊎{s ≈ t [φ ]},H) ⊢RI (E ∪{s′ ≈ t ′ [φ ′]},H)

where (s ≈ t [φ ])⇀R∪H (s′ ≈ t ′ [φ ′]).

2We assume that Var(s,φ , t,ψ)∩Var(ℓ,r,ϕ) = /0.
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DELETE

(E ⊎{s ≈ t [φ ]},H) ⊢RI (E ,H) if s = t or φ is unsatisfiable.

EQ-DELETE

(E ⊎{s ≈ t [φ ]},H) ⊢RI (E ∪{s ≈ t [φ ∧¬(
∧n

i=1(si = ti))]},H)

where s = s[s1, . . . ,sn]p1,...,pn , t = s[t1, . . . , tn]p1,...,pn for some positions p1, . . . , pn of s and terms
s1, . . . ,sn, t1, . . . , tn in T (Σtheory,Var(φ)).

The EXPAND rule makes a case analysis at an exhaustive case-splitting position p of s by adding the
case-split equations ExpdR(p,s, t,φ) to E and by adding the rule s → t [φ ] to H as an induction hypothe-
sis. The CASE rule also makes a case analysis at an exhaustive case-splitting position p, but does not add
any induction hypothesis to H. The SIMPLIFY rule applies a rule in R∪H to s≈ t [φ ]; the application of a
rule in R corresponds to the simplification by definition, and the application of a rule in H corresponds to
the application of induction hypotheses. The DELETE rule drops an equation that is trivially an inductive
theorem of R. The EQ-DELETE rule removes from the set of substitutions respecting φ some substi-
tutions by conjuncting ¬(

∧n
i=1(si = ti)) with φ : When s = s[s1, . . . ,sn]p1,...,pn and t = s[t1, . . . , tn]p1,...,pn

with s1, t1, . . . ,sn, tn ∈ T (Σtheory,Var(φ)), for any substitution γ respecting
∧n

i=1(si = ti), we have that
sσ = tσ ; thus, it suffices to show that s ≈ t [φ ∧¬(

∧n
i=1(si = ti))] is an inductive theorem of R.

To make it explicit which inference rule is applied, instead of ⊢RI, we write ⊢E, ⊢C, ⊢S, ⊢D, and
⊢Q for the application of EXPAND, CASE, SIMPLIFY, DELETE, and EQ-DELETE, respectively. We call
constrained rewrite rules obtained by the application of EXPAND IH rewrite rules. Given a terminating
and quasi-reducible LCTRS R and a finite set E0 of constrained equations to be proved, RI starts with
(E0, /0) and attempts to induce ( /0,H) for some LCTRS H by means of the application of inference rules
to RI states: If (E0, /0) ⊢∗

RI ( /0,H), then all constrained equations in E0 are inductive theorems of R.

Example 3.1 The constrained equation (3) in Example 1.1 is proved by RI to be an inductive theorem
of R1 as follows:

({(3) sumx(n)≈ m [Φm,n]}), /0)

⊢E (


0≈m [n = 0∧Φm,n]

n+ sumx(n+one)≈m [n > 0∧one =−1∧Φm,n]
n+ sumx(n+one)≈m [n < 0∧one = 1∧Φm,n]

 ,{sumx(n)→ m [Φm,n]})

⊢Q (


0≈m [n = 0∧Φm,n ∧¬(0= m)]

n+ sumx(n+one)≈m [n > 0∧one =−1∧Φm,n]
n+ sumx(n+one)≈m [n < 0∧one = 1∧Φm,n]

 ,{sumx(n)→ m [Φm,n]})

⊢2
D ({n+ sumx(n+one)≈ m [n > 0∧one =−1∧Φm,n]},{. . .})

⊢S ({n+ sumx(y)≈ m [n > 0∧one =−1∧Φm,n ∧ y = n+one]},{sumx(n)→ m [Φm,n]})

⊢S ({n+m′ ≈ m [n > 0∧one =−1∧Φm,n ∧ y = n+one∧Φm′,y]},{. . .})

⊢Q ({n+m′ ≈ m [n > 0∧one =−1∧Φm,n ∧ y = n+one∧Φm′,y ∧n+m′ ̸= m]},{. . .})

⊢D ( /0,{sumx(n)→ m [Φm,n]})

Recall that Φm,n = (n ≥ 0∧m = (n× (n+1))div2) and Ψm,n = (n < 0∧m =−((n× (n−1))div2)).
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4 Merging IH Rewriting Rules at EXPAND Steps

The application of the SIMPLIFY rule w.r.t. IH rewrite rules is the application of induction hypotheses,
which usually plays the most important role to succeed in proving given constrained equations to be
inductive theorems. Viewed in this light, the broader the scope of the application of IH rewrite rule, the
greater the possibilities for proving constrained equations. In this section, by merging IH rewrite rules,
we modify the EXPAND rule in order to make the scope of the application of IH rewrite rule broader.

Definition 4.1 For constrained rewrite rules ℓ → r [ϕ] and ℓ′ → r′ [ϕ ′], we write (ℓ → r [ϕ]) ≳ (ℓ′ →
r′ [ϕ ′]) if there exists a renaming δ such that

• Dom(δ )⊆ Var(ℓ,r,ϕ),

• ℓ′ = ℓδ ,

• r′ = rδ ,

• Var(ℓ′,r′)∩Var(ϕ ′) = Var(ℓδ ,rδ )∩Var(ϕδ ), and

• (ϕ ′ ⇒ (∃⃗x. ϕδ )) is valid, where {⃗x}= Var(ϕδ )\Var(ℓδ ,rδ ).

Note that (ϕ ′ ⇒ (∃⃗x. ϕδ )) is valid if and only if ((∃⃗y. ϕ ′)⇒ (∃⃗x. ϕδ )) is valid, where {⃗y}= Var(ϕ ′)\
Var(ℓ′,r′). To make δ explicit, we often write (ℓ→ r [ϕ])≳δ (ℓ′ → r′ [ϕ ′]).

Roughly speaking, rules ℓ→ r [ϕ] and ℓ′ → r′ [ϕ ′] with (ℓ→ r [ϕ])≳ (ℓ′ → r′ [ϕ ′]) have the same rule
part ℓδ → rδ (= (ℓ′ → r′)) but the constraint part ϕ ′ is weaker than or equal to ϕδ .

Example 4.2 Regarding the constrained rewrite rules in Example 1.2, all of the following hold:

• (sumx(n)→m [Φm,n ∨Ψm,n])≳ (sumx(n)→m [Φm,n]),

• (sumx(n)→m [Φm,n ∨Ψm,n])≳ (sumx(n)→m [Ψm,n]). and

• (sumx(n)→m [Φm,n]) ̸≳ (sumx(n)→m [Ψm,n]).

Proposition 4.3 Let R be an LCTRS and ℓ → r [ϕ], ℓ′ → r′ [ϕ ′] constrained rewrite rules in R. If
(ℓ→ r [ϕ])≳ (ℓ′ → r′ [ϕ ′]), then ⇀ℓ→r [ϕ] ⊇⇀ℓ′→r′ [ϕ ′].

Proof. Assume that (ℓ→ r [ϕ]) ≳δ (ℓ′ → r′ [ϕ ′]) for some renaming δ . Then, by definition, we have
that Dom(δ )⊆Var(ℓ,r,ϕ), ℓ′ = ℓδ , r′ = rδ , Var(ℓ′,r′)∩Var(ϕ ′) = Var(ℓδ ,rδ )∩Var(ϕδ ), and (ϕ ′ ⇒
(∃⃗x. ϕδ )) is valid, where {⃗x}= Var(ϕδ )\Var(ℓδ ,rδ ). Suppose that s [φ ]∼ s′[ℓ′γ ′]p [φ ′]→base,ℓ′→r′ [ϕ ′]

s′[r′γ ′]p [φ ′]∼ t [ψ], where Dom(γ ′)⊆Var(ℓ′,r′,ϕ ′), xγ ′ ∈Val∪Var(φ ′) for any variable x∈LVar(ℓ′→
r′ [ϕ ′]), and (φ ′ ⇒ ϕ ′γ ′) is valid. Hence, we have that Var(φ ′) = Var(ϕ ′γ ′). Since {⃗x} = Var(ϕδ ) \
Var(ℓδ ,rδ ) =Var(ϕδ )\Var(ℓ′,r′), we have that Var(φ ′γ ′) =Var((∃⃗x. ϕδ )γ ′). It follows from validity
of (ϕ ′ ⇒ (∃⃗x. ϕδ )) and (φ ′ ⇒ ϕ ′γ ′) that φ ′, φ ′∧ϕ ′γ , and φ ′∧ (∃⃗x. ϕδ )γ ′ are equivalent. Thus, we have
that s′[ℓ′γ ′]p [φ ′] ∼ s′[ℓ′γ ′]p [φ ′∧ (∃⃗x. ϕδ )γ ′)] and s′[r′γ ′]p [φ ′] ∼ s′[r′γ ′]p [φ ′∧ (∃⃗x. ϕδ )γ ′)]. Therefore,
s [φ ]∼ s′[ℓ′γ ′]p [φ ′∧(∃⃗x. ϕδ )γ ′)] = s′[ℓδγ ′]p [φ

′∧(∃⃗x. ϕ)δγ ′)]→base,ℓ→r [ϕ] s′[rδγ ′]p [φ
′∧(∃⃗x. ϕ)δγ ′)]∼

t [ψ], and thus s [φ ]⇀ℓ→r [ϕ ′] t [ψ]. 2

We say that an LCTRS H is minimal if for any rule ℓ→ r [ϕ] ∈ H, there is no constrained rewrite
rule ℓ′ → r′ [ϕ] ∈H\{ℓ→ r [ϕ]} such that (ℓ′ → r′ [ϕ ′])≳ (ℓ→ r [ϕ]). A minimal LCTRS H is said to
be a minimal system of an LCTRS H′ if both of the following statements hold:

• →H =→H′ , and
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• for any constrained rewrite rule ℓ′ → r′ [ϕ ′] in H′, there exists a constrained rewrite rule ℓ→ r [ϕ]
in H such that (ℓ→ r [ϕ])≳ (ℓ′ → r′ [ϕ ′]).

Proposition 4.4 Let H,H′ be LCTRSs such that H is a minimal system of H′. Then, ⇀H ⊇⇀H′ .

Proof. Trivial by Proposition 4.3. 2

We now define an operation that merges a constrained rewrite rule to an LCTRS.

Definition 4.5 (merge) We say that a constrained rewrite rule ℓ → r [ϕ] can be merged with a con-
strained rewrite rule ℓ′ → r′ [ϕ ′] via a renaming δ if all of the following statements hold:

• ℓ= ℓ′δ ,

• r = r′δ ,

• Var(ϕ)∩Var(ℓ,r) = Var(ϕ ′δ )∩Var(ℓ′δ ,r′δ ), and

• (Var(ϕ ′δ )\Var(ℓ′δ ,r′δ ))∩Var(ℓ,r,ϕ) = /0.

We define an operation merge, which takes a constrained rewrite rule and an LCTRS as input and
returns an LCTRS, as follows:

• merge(ℓ→ r [ϕ], /0) = {ℓ→ r [ϕ]},

• merge(ℓ → r [ϕ],{ℓ′ → r′ [ϕ ′]}⊎H) = {ℓ → r [ϕ ∨ϕ ′δ ]}∪H if ℓ → r [ϕ] can be merged with
ℓ′ → r′ [ϕ ′] via a renaming δ , and

• otherwise, merge(ℓ→ r [ϕ],{ℓ′ → r′ [ϕ ′]}⊎H) = {ℓ′ → r′ [ϕ ′]}∪merge(ℓ→ r [ϕ],H).

By definition, it is clear that if ℓ→ r [ϕ] can be merged with ℓ′→ r′ [ϕ ′] via a renaming δ , then (ℓ→ r [ϕ∨
ϕ ′δ ])≳∅ (ℓ→ r [ϕ]), (ℓ→ r [ϕ∨ϕ ′δ ])≳∅ (ℓ→ r [ϕ ′δ ]), and (ℓ→ r [ϕ∨ϕ ′δ ])≳δ |Var(ℓ,r,ϕ)

(ℓ′ → r′ [ϕ ′]),
where ∅ is the identity substitution.

Example 4.6 Let us consider the constrained rewrite rules in Example 1.2 again. The constrained rewrite
rule sumx(n)→m [Φm,n] can be merged with sumx(n)→m [Ψm,n] via the identity renaming ∅.

The merge operation has the following property.

Proposition 4.7 Let H be a minimal LCTRS, and ℓ→ r [ϕ] a constrained rewrite rule. Then, merge(ℓ→
r [ϕ],H) is unique and a minimal LCTRS of {ℓ→ r [ϕ]}∪H.

Proof. Since H is minimal, there exists at most one constrained rewrite rule in H that can be merged
with ℓ → r [ϕ]. We make a case analysis depending on whether there exists a constrained rewrite rule
ℓ′ → r′ [ϕ ′] in H such that ℓ→ r [ϕ] can be merged with ℓ′ → r′ [ϕ ′].

• Case where there is no such a rule in H. In this case, we have that merge(ℓ→ r [ϕ],H) = {ℓ→
r [ϕ]}∪H. Recall that H is minimal. Thus, merge(ℓ→ r [ϕ],H) is unique and →{ℓ→r [ϕ]}∪H =
→merge(ℓ→r [ϕ],H). Therefore, the claim trivially holds.

• Case where there exists such a rule in H. Let ℓ′ → r′ [ϕ ′] ∈ H be a constrained rewrite rule
that can be merged with ℓ → r [ϕ] via a renaming δ . Let H′ = H\ {ℓ′ → r′ [ϕ ′]}. Then, by
definition, we have that merge(ℓ→ r [ϕ],H) = {ℓ→ r [ϕ ∨ϕ ′δ ]}∪H′ and there is no rule in H′

that can be merged with ℓ → r [ϕ]. Thus, merge(ℓ → r [ϕ],H) is unique. Since H is minimal,
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H′ is also minimal and there is no rule in H′ that can be merged with ℓ → r [ϕ ∨ϕ ′δ ]. Thus,
merge(ℓ→ r [ϕ],H) is minimal. It is clear that ℓ→ r [ϕ] ≲ ℓ→ r [ϕ ∨ϕ ′δ ] and (ℓ′ → r′ [ϕ ′]) ≲
(ℓ→ r [ϕ∨ϕ ′δ ]). It follows from Proposition 4.3 that (⇀ℓ→r [ϕ]∪⇀ℓ′→r′ [ϕ ′])⊆⇀ℓ→r [ϕ∨ϕ ′δ ], and
thus ⇀{ℓ→r [ϕ]}∪H ⊆⇀merge(ℓ→r [ϕ],H). Hence, merge(ℓ→ r [ϕ],H) is unique and ⇀{ℓ→r [ϕ]}∪H ⊆
⇀merge(ℓ→r [ϕ],H). By definition, it is trivial that →{ℓ→r [ϕ]}∪H ⊆→merge(ℓ→r [ϕ],H). Thus, we show
that →{ℓ→r [ϕ]}∪H ⊇→merge(ℓ→r [ϕ],H). Assume that s →merge(ℓ→r [ϕ],H) t. Since the case where the
applied rule to the step is not ℓ → r [ϕ ∨ϕ ′δ ] is trivial, we consider the remaining case, i.e., we
assume that ℓ→ r [ϕ ∨ϕ ′δ ] is applied at a position p of s. Then, there exists a substitution γ such
that s|p = ℓγ , t = s[rγ]p, and γ respects ϕ∨ϕ ′δ , and thus [[(ϕ ∨ϕ ′δ )γ]] =⊤. By definition, ℓtor [ϕ]
or ℓ′ → r′ [ϕ ′] ∈H are applicable to s at p, and thus we have that s →{ℓ→r [ϕ]}∪H t. Therefore, the
claim holds. 2

We introduce the merge operation to EXPAND.

EXPANDmerge

(E ⊎{s ≃ t [φ ]},H) ⊢RIm (E ∪ExpdR(p,s, t,φ),merge(s → t [φ ],H))

if R∪H∪{s → t [φ ]} is terminating, where s|p is basic for some position p of s.

We denote by ⊢RIm the step of RI where EXPAND is replaced by EXPANDmerge.

Example 4.8 The proof steps in Example 1.2 are the relation over RI states w.r.t. ⊢RIm.

Regarding merge, we have the following properties.

Proposition 4.9 Let R be an LCTRS, H a minimal LCTRS, and s → t [φ ] a constrained rewrite rule.
Then, R∪H∪{s → t [φ ]} is terminating if and only if so is R∪merge(s → t [φ ],H).

Proof. It follows from Proposition 4.7 that merge(s → t [φ ],H) is a minimal system of H∪{s → t [φ ]},
and thus →H∪{s→t [φ ]} =→merge(s→t [φ ],H). Therefore, the claim holds. 2

Proposition 4.10 Let (E ,H),(E ′,H′) be RI states such that (E ,H) ⊢RIm (E ′,H′). If H is minimal, then
so is H′.

Proof. Trivial by Proposition 4.7. 2

The modification of EXPAND does not lose the proof power of RI.

Theorem 4.11 Let R,H be LCTRSs, E0,E finite sets of constrained equations, and n a natural number.
If (E0, /0) ⊢n

RI (E ,H), then there exists an LCTRS H′ such that (E0, /0) ⊢n
RIm (E ,H′) and H′ is a minimal

system of H.

Proof. We prove this claim by induction on n. Since the case where n = 0 is trivial, we consider the
remaining case where n > 0. Suppose that (E0, /0) ⊢n−1

RI (E1,H1) ⊢RIm (E ,H). Then, by the induction
hypothesis, there exists an LCTRS H′

1 such that (E0, /0) ⊢n−1
RIm (E1,H′

1) and H′
1 is a minimal system of H1.

We make a case analysis depending on which inference rule is applied at the step of (E1,H1) ⊢RI (E ,H).
Since the case where the applied rule is CASE, DELETE, or EQ-DELETE is not relevant to H (and thus
H = H1 in this case), it trivially holds that (E1,H1) ⊢RIm (E ,H1) = (E ,H). Thus, we consider the
remaining case.
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• Case where the applied rule is EXPAND. Suppose that (E1,H1) = (E ′
1 ⊎ {s ≃ t [φ ]},H1) ⊢RI

(E ′
1∪ExpdR(p,s, t,φ),H1∪{s → t [φ ]}) = (E ,H), where R∪H1∪{s → t [φ ]} is terminating and

s|p is basic for some position p of s. It follows from Proposition 4.9 that R∪merge(s → t [φ ],H1)
is terminating. Thus, we have that (E1,H′

1) = (E ′
1 ⊎{s ≃ t [φ ]},H′

1) ⊢RIm (E ′
1 ∪ExpdR(p,s, t,φ),

merge(s→ t [φ ],H′
1)) = (E ,merge(s→ t [φ ],H′

1)). It follows from Proposition 4.7 that merge(s→
t [φ ],H′

1) is a minimal system of H1 ∪{s → t [φ ]} (= H). Therefore, we have that (E0, /0) ⊢n−1
RIm

(E1,H′
1) = (E ′

1 ⊎ {s ≃ t [φ ]},H′
1) ⊢RIm (E ′

1 ∪ ExpdR(p,s, t,φ),merge(s → t [φ ],H′
1)) = (E ,

merge(s → t [φ ],H′
1)).

• Case where the applied rule is SIMPLIFY. Suppose that (E1,H1) = (E ′
1 ⊎ {s ≈ t [φ ]},H1) ⊢RI

(E ′
1 ∪{s′ ≈ t ′ [φ ′]},H1) = (E ,H), where (s ≈ t [φ ])⇀R∪H1 (s

′ ≈ t ′ [φ ′]). Since H′
1 is a minimal

system of H1, it follows from Proposition 4.4 that (s ≈ t [φ ])⇀R∪H′
1
(s′ ≈ t ′ [φ ′]). Therefore, we

have that (E0, /0) ⊢n−1
RIm (E1,H′

1) = (E ′
1 ⊎{s ≈ t [φ ]},H′

1) ⊢RI (E ′
1 ∪{s′ ≈ t ′ [φ ′]},H′

1) = (E ,H′
1). 2

5 Conclusion

In this paper, we modified the EXPAND rule of RI for LCTRSs and showed that this modification does
not lose the proof power of RI. We have not yet known whether the modification of EXPAND (i.e.,
EXPANDmerge) is an improvement of RI. That is, for the present, the following is an open problem: If
(E , /0) ⊢∗

RIm ( /0,H), then (E , /0) ⊢∗
RI ( /0,H′) for some LCTRS H′. As a future work, we will try to prove

this open problem or to find a counterexample. Furthermore, we will implement the EXPANDmerge rule
in an RI-based tool for LCTRSs and evaluate the usefulness of the EXPANDmerge rule from the viewpoint
of efficiency, by means of several examples.
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Rewriting Induction (RI) is a method for inductive theorem proving in equational reasoning, in-
troduced in 1990 by Reddy. Using Logically Constrained Simply-typed Term Rewriting Systems
(LCSTRSs) makes it into an interesting tool for program verification (in particular program equiv-
alence), as LCSTRSs closely describe real-life programming. Correctness of RI depends on well-
founded induction, and one of the core obstacles for obtaining a practically useful proof system is
to find suitable well-founded orderings automatically. Using naive approaches, induction hypotheses
must be oriented within the well-founded ordering, leading to very strong ordering requirements,
which in turn, severely limits the proof capacity of RI. Here, we introduce bounded RI: an adaption
of RI for LCSTRSs where such requirements are being minimized.

1 Introduction

Rewriting Induction (RI) is a proof system for showing equations s≈ t to be inductive theorems, meaning
that every variable-free instance of s≈ t is related by ↔∗R : the reflexive, transitive closure of↔R =→R
∪←R (and with R the set of rewrite rules that completely describe the reduction behavior of s and t).
RI was introduced by Reddy [10], as a method to validate inductive proof procedures based on Knuth-
Bendix completion. Classically, it is used in equational reasoning to prove properties of inductively
defined mathematical structures such as natural numbers or lists. For example, one could use RI to
prove an equation add(x,y)≈ add(y,x), expressing commutativity of addition on the natural numbers. It
was adapted to constrained rewriting [6], and recently to higher-order constrained rewriting [9]. These
formalisms closely relate to real-life programming and therefore have a natural place in the larger toolbox
for program verification. Programs are represented by term rewriting systems, and inductive theorems
provide an interpretation of program equivalence.

Why constrained rewriting? Using RI for program equivalence somewhat differs from the standard
setting in equational reasoning where, for example, the Peano axioms are used to prove statements about
the natural numbers. In our case, we are not so much interested in proving properties about the natural
numbers themselves, but about programs that operate on them. Of course, we can express the Peano
axioms as rewrite rules and use this to define programs on natural numbers. However, the disadvantage
of this approach is that we also have to define add and mul to represent + and ∗. In this way, studying
program equivalence becomes a cumbersome experience, getting involved in complicated interactions
between add, mul and the program definition itself. Like in real-life programming, we want to treat the
natural numbers as being given for free. With standard term rewriting this is not possible.

Constrained rewriting provides a solution here, as they natively support primitive data structures,
such as natural numbers and integers. This makes it possible to distinguish between the actual program
definition (represented by rewrite rules), and underlying data structures with their operators (represented
by distinguished terms with pre-determined semantical interpretations). This allows us to shift some of
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the proof-burden from the rewriting side to the semantical side (which e.g. could be handled by an SMT
solver).

In constrained rewriting, rewrite rules are of the shape s→ t [ϕ] where the boolean constraint ϕ acts
as a guard, managing control flow over primitive data structures (such as the natural numbers). Here, we
will consider Logically Constrained Simply-typed Term Rewriting Systems (LCSTRSs), which concerns
applicative higher-order rewriting (without λ abstractions) and first-order constraints [8]. In particular,
we will build on our earlier work [9] where we defined RI for LCSTRSs.

Rewriting Induction and Termination The name Rewriting Induction refers to the principle that for
a terminating rewrite system R, the rewrite relation →+

R defines a well-founded order on the set of all
terms, and therefore can be used for proofs by well-founded induction. In many cases, however, we will
need a well-founded order ≻ which is strictly larger than →+

R. This is because the role of induction
hypothesis in RI is also taken by equations, which must be applied like a rewrite rule, in a decreasing
direction w.r.t.≻. That is, we are only allowed to use an induction hypothesis s≈ t if s≻ t or t ≻ s holds.
Consequently, termination ofR itself is not enough, since equations are not usually orientable by→+

R.
One solution to this problem is to for instance let≻=→+

R∪{s→t}; or, in the case of multiple induction
hypothesis, to collect all the corresponding rewrite rules in a setH and use≻=→+

R∪H. However, doing
this leaves us with a proof obligation to show termination of R∪H. Even if we already know that R
is terminating, it may not be easy or even possible to prove that the same holds for R∪H (think for
instance of an induction hypothesis add(x,y)≈ add(y,x), which is not orientable in either direction). In
such a situation a RI proof might get stuck.

Our goal is to redefine RI for LCSTRSs in such a way that we minimize the termination require-
ments. As already observed by Reddy [10], we do not necessarily need every induction hypothesis being
oriented, as long if we can guarantee that an induction rule s→ t is only applied to terms ≻-smaller than
s. For this, it is not required to choose the well-founded ordering ≻ =→+

R∪H. Reddy proposed to use
modulo rewriting to build a well-founded ≻ which may not need to contain all induction rules. This ap-
proach was investigated by Aoto, who introduced several extensions of RI for first-order unconstrained
rewriting [1, 2, 3]. Here we will follow a strategy along the same idea: by redefining RI we can construct
a well-founded relation ≻ during the RI process, aiming to keep it as small as possible.

2 Preliminaries

2.1 Logically Constrained Simply Typed Rewriting Systems

Types and Terms Assume a set of sorts (base types) S; the set T of types is defined by the grammar
T ::=S | T →T . Here,→ is right-associative, so all types may be written as type1→ . . .→ typem→ sort
with m≥ 0. We also assume a subset Stheory ⊆S of theory sorts (e.g., int and bool), and define the theory
types by Ttheory ::= Stheory | Stheory→Ttheory. Each theory sort ι ∈ Stheory is associated with a non-empty
set Iι (e.g., Iint = Z, the set of all integers), and we let Iι→σ be the set of functions from Iι to Iσ .

We assume a signature Σ of function symbols and a disjoint set V of variables, and a function typeof
from Σ∪V to T ; we require that there are infinitely many variables of all types. The set of terms T (Σ,V)
over Σ and V are the expressions in T – defined by the grammar T ::= Σ | V | T T – that are well-typed:
if s :: σ → τ and t :: σ then s t :: τ , and a :: typeof (a) for a ∈ Σ∪V .

Application is left-associative, which allows all terms to be written in a form a t1 · · · tn with a ∈ Σ∪V
and n≥ 0. Writing t = a t1 · · · tn, we define head(t) = a. For a term t, let Var(t) be the set of variables in
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t. A term t is ground if Var(t) = /0. We say that a type is inhabited if there are ground terms of that type.
We assume that Σ is the disjoint union Σtheory⊎Σterms, where typeof (f) ∈ Ttheory for all f ∈ Σtheory. Each
f ∈ Σtheory has an interpretation [[f]] ∈ Itypeof (f). For example, a theory symbol ∗ :: int→ int→ int may
be interpreted as multiplication on Z. We use infix notation for the binary symbols, or use [f] for prefix
or partially applied notation (e.g., [+] x y and x+ y are the same).

Symbols in Σterms do not have an interpretation since their behavior will be defined through the
rewriting system. Values are theory symbols of base type, i.e. Val = {v ∈ Σtheory | typeof (v) ∈ Stheory}.
We assume there is exactly one value for each element of Iι (ι ∈ Stheory). Elements of T (Σtheory,V) are
called theory terms. For ground theory terms, we define [[s t]] = [[s]]([[t]]). We fix a theory sort bool with
Ibool = {⊤,⊥}. A constraint is a theory term s :: bool, such that typeof (x) ∈ Stheory for all x ∈Var(s).

Example 1 In this text we always use Stheory = {int,bool} and Σtheory = {+,−,∗,<,≤,>,≥,=,∧,∨,¬,
true,false}∪ {n | n ∈ Z}, with +,−,∗ :: int→ int→ int, <,≤,>,≥,=:: int→ int→ bool, ∧,∨ ::
bool→ bool→ bool, ¬ :: bool→ bool, true,false :: bool and n :: int. We let Iint = Z, Ibool = {⊤,⊥}
and interpret all symbols as expected. The values are true,false and all n. Theory terms are for
instance x+ 3, true and 7 ∗ 0. The latter two are ground. We have [[7 ∗ 0]] = 0. Let x ∈ V of type int.
Then theory term x > 0 is a constraint, but the theory term ( f x)> 0 with f ∈ V of type int→ int is not
(since typeof ( f ) /∈ Stheory), nor is [>] 0 :: int→ bool (since constraints must have type bool).

Substitutions, contexts and subterms A substitution is a type-preserving mapping γ : V → T (Σ,V).
The domain of a substitution is defined as dom(γ) = {x ∈ V | γ(x) ̸= x}, and the image of a substitution
as im(γ) = {γ(x) | x ∈ dom(γ)}. A substitution on finite domain {x1, . . . ,xn} is often denoted [x1 :=
s1, . . . ,xn := sn]. A substitution γ is extended to a function s 7→ sγ on terms by placewise substituting
variables in the term by their image: (i) tγ = t if t ∈ Σ, (ii) tγ = γ(t) if t ∈V , and (iii) (t0 t1)γ = (t0γ) (t1γ).
If M ⊆ T (Σ,V) then γ(M) denotes the set {tγ | t ∈M}. A ground substitution is a substitution γ such that
for all x ∈ dom(γ) of an inhabited type, γ(x) is a ground term. A substitution γ respects a constraint ϕ

if γ(Var(ϕ))⊆ Val and [[ϕγ]] =⊤. We say that a constraint ϕ is satisfiable if there exists a substitution
γ that respects ϕ , and is valid if [[ϕγ]] = ⊤ for all ground substitutions γ that map each x ∈ Var(ϕ) to
values. Let □1, . . . ,□n be fresh, typed constants (n ≥ 1). A context C[□1, . . . ,□n] (or just: C) is a term
in T (Σ∪{□1, . . . ,□n},V) in which each □i occurs exactly once. The term obtained from C by replacing
each □i by a term ti of the same type is denoted by C[t1, . . . , tn]. We say that t is a subterm of s, notation
s� t, if either s = t or s = a s1 · · ·sn and si � t for some i. We say that t is a strict subterm of s, notation
s� t, if s� t and s ̸= t. (Here we deviate from the typical norm in higher-order rewriting, since we do
not for instance include s as a subterm of a term s t. This is deliberate, because we are only interested in
“maximally applied” subterms.)

Rewrite rules and reduction relation A rewrite rule is an expression ℓ→ r [ϕ]. Here ℓ and r are
terms of the same type, ℓ has a form f ℓ1 · · ·ℓk with f ∈ Σ and k ≥ 0, ϕ is a constraint and Var(r) ⊆
Var(ℓ)∪Var(ϕ). If ϕ = true, we just write ℓ→ r. In what follows we fix a signature Σ. We define the
set of calculation rules as: Rcalc = {f x1 · · ·xm → y [y = f x1 · · ·xm] | f ∈ Σtheory \Val with typeof (f) =
ι1→ . . .→ ιm→ κ}. We furthermore assume a set of rewrite rulesR satisfying the following properties

• for all ℓ→ r [ϕ] ∈R: ℓ is not a theory term (such rules are contained inRcalc)

• for all f ℓ1 · · ·ℓk→ r [ϕ], g ℓ′1 · · ·ℓ′n→ r′ [ψ] ∈R∪Rcalc: if f = g then k = n

The latter restriction blocks us for instance from having both a rule append nil→ id and a rule
append (cons x y) z→ cons x (append y z). While such rules would normally be allowed in higher-order

99



Bounded Rewriting Induction for LCSTRSs

rewriting, we need to impose this limitation for the notion of quasi-reductivity to make sense, as discussed
in [9]. This does not really limit expressivity, since we can use a strategy similar to η-expansion, padding
both sides of a rule with variables, e.g., replacing the first rule above by append nil x→ id x.

Elements of D = {f ∈ Σ | ∃f ℓ1 · · ·ℓk → r [ϕ] ∈ R} are called defined symbols. Elements of C =
Val∪(Σterms\D) are called constructors. Elements of Σcalc =Σtheory\Val are called calculation symbols.

For every defined or calculation symbol f :: σ1→ . . .→ σm→ ι with ι ∈ S, we let ar(f)≤ m be the
number such that for every rule of the form f ℓ1 · · ·ℓk → r [ϕ] in R∪Rcalc we have ar(f) = k. (By the
restrictions above, this number exists.) For all constructors f ∈ C, we define ar(f) = ∞.

The reduction relation→R is defined by:

C[lγ]→R C[rγ] if ℓ→ r [ϕ] ∈R∪Rcalc and γ respects ϕ

Note that by definition of context, reductions may occur at the head of an application. For example, if
append nil→ id ∈R, then we could reduce append nil s →R id s.

LCSTRS An LCSTRS is a pair (T (Σ,V),→R) generated by (S,Stheory,Σterms,Σtheory,V, typeof ,I, [[·]],
R). We often refer to an LCSTRS by L= (Σ,R), or justR, leaving the rest implicit.

We say L= (Σ,R) is terminating if there is no infinite reduction sequence s0→R s1→R s2→R . . .
for any s0 ∈ T (Σ,V). A term s has normal form t if s→∗R t and t cannot be reduced. We say L is
weakly normalising if every term has at least one normal form. Note that termination implies weak
normalisation, but not the other way around.

Example 2 LetR consist of the following rules

(R1) recdown f n i a→ a [i < n] (R2) recdown f n i a→ f i (recdown f n (i−1) a) [i≥ n]

(R3) tailup f i m a→ a [i > m] (R4) tailup f i m a→ tailup f (i+1) m ( f i a) [i≤ m]

The intuition is that recdown and tailup define recursors that can be used to describe a class of simple real-
life programs which compute a return-value using a recursive or tail-recursive procedure. More specifi-
cally, we consider programs that use a loop index i, being decreased/increased by 1 during each recursive
call, until i reaches a value below lower bound n or above upper bound m. For example, we can represent
the following two programs (both computing the factorial function x 7→ ∏

x
i=1 when restricting to non-

negative integers)
int factRec(int x){

if (x >= 1)
return(x*factRec(x-1));

else
return 1; }

int factTail(int x){
int a = 1; int i = 1;
while (i<=x){

a = i*a; i = i+1;}
return a; }

with recdown and tailup by introducing rewrite rules factRec x→ recdown [∗] 1 x 1 (loop index x and
lower bound 1) and factTail x→ tailup [∗] 1 x 1 (loop index 1 and upper bound x).

In general, we can think about recdown [∗] n i a to compute (∏i
k=n k) · a and we can think about

tailup [∗] j m b to compute (∏m
k= j k) ·b. Hence, all ground instances of recdown [∗] n i a and tailup [∗] n i a

produce the same result. We will prove this with bounded rewriting induction in subsection 3.2; not just
for f = ∗, but for arbitrary function f :: int→ int→ int.

Considering R = {(R1), (R2), (R3), (R4)} we have S = Stheory = {int,bool}, Σterms = {recdown,
tailup :: (int→ int→ int)→ int→ int→ int→ int} and Σtheory as in Example 1. Furthermore, Σcalc =
{+,−,∗,<,≤,>,≥,=,∧,∨}, D = Σterms and C = Val = {true,false} ∪ {n | n ∈ Z}. Substitution
γ = [i := 1, n := 0] induces a reduction recdown f 0 1 a→R f 1 (recdown f 0 (1− 1) a)→Rcalc
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f 1 (recdown f 0 0 a)→R f 1 ( f 0 (recdown f 0 (0−1) a))→Rcalc f 1 ( f 0 (recdown f 0 (−1) a))
→R f 1 ( f 0 a). It is easy to check that (tailup f n i a)γ = tailup f 0 1 a also reduces to f 1 ( f 0 a).

We will limit our interest to quasi-reductive LCSTRSs (defined below), which is needed to guarantee
correctness of RI. Intuitively, this property expresses that pattern matching on ground terms is exhaustive
(i.e. there are no missing reduction cases). For example, the rewrite system R = {(R1), (R2)} is quasi-
reductive because i < n and i ≥ n together cover all ground instances of recdown f n i a. But if we, for
example, replace (R2) by recdown f n i a→ f i (recdown f n (i−1) a) [i > n] then it is not, as we are
missing all ground reduction cases for i = n (for example recdown [∗] 0 0 0 does not reduce anymore).

For first-order the LCTRSs, quasi-reductivity is achieved by demanding that there are no other ground
normal forms than the ground constructor terms T (C, /0). For higher-order LCSTRSs, however, this
approach does not work as we can have ground normal forms with partially applied defined symbols (for
example, recdown [+]). Hence, the notion of constructor terms is generalized to the higher-order setting.

Quasi-reductivity Let L = (Σ,R) be some LCSTRS. The semi-constructor terms over L, notation
SCT L, are defined by (i). V ⊆ SCT L, (ii). if f ∈ Σ with f :: σ1 → . . .→ σm → ι , ι ∈ S and s1 ::
σ1, . . . ,sn :: σn ∈ SCT L with n≤ m, then f s1 · · ·sn ∈ SCT L if n < ar(f).

Semi-constructor terms are always normal forms. Furthermore, as ar(f)=∞ for f ∈C, the constructor
terms T (C,V) are contained in SCT L. Ground semi-constructor terms SCT /0

L are the terms built without
(i). A ground semi-constructor substitution (gsc substitution) is a substitution such that im(γ)⊆ SCT /0

L.
L is quasi-reductive if for every t ∈ T (Σ, /0) we have t ∈ SCT /0

L or t reduces with→R. Put differently,
the only ground normal forms are semi-constructor terms. Weak normalization and quasi-reductivity
together ensure that every ground term reduces to a semi-constructor term. Note that, if s1, . . . ,sn are
ground normal forms and f ∈ Σ, then f s1 · · ·sn is a ground normal form if and only if n < ar(f).

Equations and inductive theorems An equation is a triple s≈ t [ϕ] with typeof (s) = typeof (t) and ϕ

a constraint, such that all variables in Var(s)∪Var(t)∪Var(ϕ) have an inhabited type. If ϕ equals true,
we will simply write the equation as s≈ t. A substitution γ respects s≈ t [ϕ] if γ respects ϕ . An equation
s ≈ t [ϕ] is an inductive theorem (aka ground convertible) if sγ ↔∗R tγ for every ground substitution γ

that respects ϕ . Here↔R =→R ∪←R, and↔∗R is its transitive, reflexive closure.

Example 3 The LCSTRS from Example 2 admits an equation recdown f n i a≈ tailup f n i a. Since it
has constraint true, any substitution respects it. In subsection 3.2 we will prove that this equation is an
inductive theorem, meaning that (recdown f n i a)γ ↔∗R (tailup f n i a)γ for any ground substitution γ .

3 Rewriting Induction

RI was introduced [10] as a deduction system for proving inductive theorems, using unconstrained first-
order term rewriting systems. Since then, many variations on the system have appeared (e.g., [1, 2, 3,
5, 6, 9]), including a version for LCSTRSs. All are based on well-founded induction, using some well-
founded relation ≻. Some [10, 5, 6, 9] use a fixed strategy to construct a terminating rewrite system
A ⊇ R and then choose ≻ = →+

A . However, as explained in the introduction, this approach leads to
heavy termination requirements, because these strategies include all induction hypothesis into A.

To improve on this, some work has been done [1, 2, 3] employing a well-founded relation ≻ that
satisfies certain requirements (like monotonicity and stability, but also ground totality). This relation
may either be fixed beforehand (e.g., the lexicographic path ordering), or constructed during or after the
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proof, as the proof process essentially accumulates termination requirements. The RI system is designed
to keep termination requirements as mild as possible, for example by allowing reduction steps with an
induction hypothesis to be oriented using a second relation ⪰ rather than the default ≻. However, this
approach also imposes more bureaucracy, since derivation rules rely on several steps being done at once
– for example, by reasoning modulo the set of induction hypotheses. This makes it quite hard to use
especially when the relation ≻ is not fixed beforehand but rather constructed on the fly.

Here, we aim to combine the best of both worlds. We try to reduce termination requirements using
a pair (≻,⪰), which may either be fixed in advance, or constructed as part of the proof process. Im-
portantly, we do not impose the ground totality requirement (which would be extremely restrictive in
higher-order rewriting!), and thus allow for ≻ to for instance be a relation (→A ∪�)+, or a construction
based on dependency pairs. We avoid the bureaucracy of combining steps by introducing the notion of
an equation context, which keeps track of an extra pair of terms to be used for ordering requirements.

3.1 Equation contexts and proof states

RI is a deduction system on proof states, which are pairs of the shape (E ,H). Intuitively (and following
the existing literature), E is a set of equations, describing all proof goals, and H is the set of induction
hypotheses that have been assumed. At the start E consists of all equations that we want to prove to be
inductive theorems, andH= /0. With a deduction rule we may transform a proof state (E ,H) into another
proof state (E ′,H′). This is denoted as (E ,H) ⊢ (E ′,H′). We write ⊢∗ for the reflexive, transitive closure
of ⊢. Correctness of RI is guaranteed by the following principle: “If (E ,H) ⊢∗ ( /0,H) for some set H,
then every equation in E is an inductive theorem” [6, 9]. Intuitively, this reads as: if we can remove every
proof obligation (making E empty) then every equation in E is an inductive theorem.

In Bounded RI, we will deviate from this setting in one respect: instead of letting E be a set of
equations, we will use a set of equation contexts.

3.2 Bounded Rewriting Induction

We will now introduce bounded rewriting induction, considering proof states containing only bounded
equation contexts. For this, we assume a bounding pair:

Definition 1 (Bounding Pair) A bounding pair for an LCSTRS L = (Σ,R) is a pair (≻,⪰) with ≻ a
well-founded partial ordering on T (Σ, /0) (that is, ≻ is a transitive, anti-symmetric, irreflexive and well-
founded relation) and ⪰ a quasi-order on T (Σ, /0) (that is, ⪰ is a transitive and reflexive relation) such
that ≻ ⊆ ⪰, ≻ · ⪰ ⊆ ≻, ⪰ · ≻ ⊆ ≻ and such that s⪰ t whenever s→R t or s� t.

A bounding pair is extended to non-ground terms with constraint: we define s≻ t [ψ] iff sγ ≻ tγ for
all ground substitutions γ that respect ψ . (s⪰ t [ψ] is defined similarly)

If L is terminating we can choose ≻= (→R ∪ �)+ and ⪰ the reflexive closure of ≻. But there are other
ways to choose a bounding pair, for example monotonic algebras or recursive path orderings.

Definition 2 (Equation context) Let • be a fresh symbol. We define • ≻ s and • ⪰ s for all s ∈ T (Σ,V),
and also • ⪰ •. An equation context (ς ; s ≈ t ; τ) [ψ] is a tuple of two elements ς ,τ ∈ T (Σ,V)∪{•},
two terms s, t and a constraint ψ . We write (ς ; s ≃ t ; τ) [ψ] (so with ≃ instead of ≈) to denote either
an equation context (ς ; s≈ t ; τ) [ψ] or an equation context (τ ; t ≈ s ; ς) [ψ].

A bounded equation context is an equation context such that both ς ⪰ s [ψ] and τ ⪰ t [ψ]. A
substitution γ respects an equation context (ς ; s≈ t ; τ) [ψ] if γ respects ψ .
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An equation context couples an equation with a bound on the induction: we implicitly work with the
induction hypothesis “all ground instances of an equation in H that are strictly smaller than the current
instance of ς ≈ τ [ψ] are convertible”. For example, in an equivalence proof of two implementations of
the factorial function, we may encounter induction hypothesis fact1 n ≈ fact2 n [n ≥ 0], and equation
context (fact1 n ; fact1 k ≈ fact2 k ; fact2 n) [n > 0∧ n = k+ 1]. We can apply the instance fact1 k ≈
fact2 k [k ≥ 0] of the induction hypothesis to fact1 k ≈ fact2 k [n > 0∧n = k+1] because

(1). n > 0∧ n = k + 1 implies k ≥ 0, and (2). both fact1 n ≻ fact1 k [n > 0∧ n = k + 1] and
fact2 n≻ fact2 k [n > 0∧n = k+1] hold for an appropriately chosen ≻.
Definition 3 (Proof state) (E ,H) is a proof state if E a set of equation contexts andH a set of equations.

From Definition 2 we can see that • behaves as an infinity term with respect to ≻ and ⪰. As expressed
by Theorem 1: when using bounded RI to prove a set of equations, we pour them into a set E of equation
contexts using infinite bounds ς = τ= •. This is not a problem, because we always start with the proof
state (E , /0), so there are no induction hypothesis available yet. As soon we add an induction hypothesis
to the proof state, the bounds are correctly getting lowered, as dictated by Figure 1.(Induct).
Theorem 1 (Correctness of Bounded RI) Let L be a weakly normalizing, quasi-reductive LCSTRS; let
A be a set of equations; and let E be the set of equation contexts {(• ; s ≈ t ; •) [ψ] | s ≈ t [ψ] ∈ A}.
Let (≻,⪰) be some bounding pair, such that (E , /0) ⊢∗ ( /0,H), for some H using the derivation rules in
Figure 1. Then every equation in A is an inductive theorem.

The deduction rules for bounded rewriting induction are provided in Figure 1, and explained in detail
below via a running example. This figure uses one particular new notation ψ |=δ ϕ , defined as follows:
Definition 4 (|=δ ) Let δ be a substitution and ϕ , ψ be constraints. We write ψ |=δ ϕ if δ (Var(ϕ)) ⊆
Val∪Var(ψ), and ψ =⇒ ϕδ is a valid constraint.

We will now elaborate on the rules of Figure 1, and illustrate their use through examples. To start,
we will use the LCSTRS from Example 2 applied on the equation recdown f n i a ≈ tailup f n i a.
Following Theorem 1, we will show that there is a setH such that

(E1, /0) ⊢∗ ( /0,H) with E1 := {(• ; recdown f n i a≈ tailup f n i a ; •) [true]}

We use the proof process to accumulate requirements on ≻ to be used, but precommit to a bounding
pair such that ⪰ is the reflexive closure of ≻. We also assume that s ≻ t whenever s→R t or s� t. To
guarantee a well-defined proof system on bounded equation contexts we should demonstrate (which we
will not do here) that all deduction rules preserve the following property

(⋆⋆) : For every equation context (ς ; s≈ t ; τ) [ψ]

either ς = s or ς ≻ s [ψ], and also either τ= t or τ≻ t [ψ].

(Induct) This deduction rule starts an induction proof. From a proof-technical point of view two things
happen. First, and most importantly for the proof progress, the current equation is added to H, making
it available for later application of (Hypothesis) or (H-Delete). Second, the bounding terms ς ,τ are
replaced by s, t. This ensures that, when an induction hypothesis s ≈ t [ψ] is applied, it is only on
equations that are strictly smaller than s≈ t [ψ].

In our running example, we use (Induct) to obtain (E1, /0) ⊢ (E2,H2) where

E2 = {(ς2 ; recdown f n i a≈ tailup f n i a ; τ2) [true]} H2 = {recdown f n i a≈ tailup f n i a}

We recall ς2 = recdown f n i a and τ2 = tailup f n i a for later usage in the RI process.
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Figure 1: Derivation rules for bounded rewriting induction, given a bounding pair (≻,⪰).

(Simplify)

(E ⊎{(ς ; C[ℓδ ]≃ t ; τ) [ψ]},H)
ℓ→ r [ϕ] ∈R∪Rcalc and ψ |=δ

ϕ

(E ∪{(ς ; C[rδ ]≈ t ; τ) [ψ]},H)

(Case)
(E ⊎{(ς ; s≈ t ; τ) [ψ]},H) C a cover set of s≈ t [ψ]

(see Definition 5)(E ∪{(ςδ ; sδ ≈ tδ ; τδ ) [ψδ ∧ϕ] | (δ ,ϕ) ∈ C},H)

(Delete)
(E ⊎{(ς ; s≈ t ; τ) [ψ]},H)

ψ unsatisfiable, or s = t
(E ,H)

(Semi-constructor)
(E ⊎{(ς ; f s1 · · ·sn ≈ f t1 · · · tn ; τ) [ψ]},H)

n > 0 and ( f ∈ V or n < ar( f ))
(E ∪{(ς ; si ≈ ti ; τ) [ψ] | 1≤ i≤ n} ,H)

(Induct)
(E ⊎{(ς ; s≈ t ; τ) [ψ]},H)

(E ∪{(s ; s≈ t ; t) [ψ]},H∪{s≈ t [ψ]})

(Hypothesis)
(E ⊎{(ς ; C[ℓδ ]≃ t ; τ) [ψ]},H) ℓ≃ r [ϕ] ∈H and ψ |=δ

ϕ and

ς ≻ ℓδ [ψ] and ς ≻ rδ [ψ] and ς ⪰C[rδ ] [ψ](E ∪{(ς ; C[rδ ]≈ t ; τ) [ψ]},H)

(H-Delete)
(E ⊎{(ς ; C[ℓδ ]≃C[rδ ] ; τ) [ψ]},H) ℓ≃ r [ϕ] ∈H and ψ |=δ

ϕ and

ς ≻ ℓδ [ψ] or τ≻ rδ [ψ](E ,H)

(Generalize)/(Alter)
(E ⊎{(ς ; s≈ t ; τ) [ψ]},H) (ς ′ ; s′ ≈ t ′ ; τ′) [ϕ] generalizes/alters (ς ; s≈ t ; τ) [ψ]

(see Definition 6), and ς
′ ⪰ s′ [ϕ] and τ′ ⪰ t ′ [ϕ](E ∪{(ς ′ ; s′ ≈ t ′ ; τ′) [ϕ]},H)

(Postulate)
(E ,H)

(E ∪{(• ; s≈ t ; •) [ψ]},H)
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(Case) Comparing E2 to R, which of the rules should we apply? As we will see in (Simplify), this
requires information about how the variables i,n in the equation are instantiated, since we have to dis-
tinguish between the cases i < n and i ≥ n. This is where (Case) can help us, splitting an equation into
multiple cases. Of course, we have to make sure that the cases together cover the original equation.

Definition 5 (Cover set) A cover set of s ≈ t [ψ] is a set C of pairs (δ ,ϕ), with δ a substitution and ϕ

a constraint, such that for every gsc substitution γ respecting s≈ t [ψ], there exists (δ ,ϕ) ∈ C such that
sγ ≈ tγ [ψγ] is an instance of sδ ≈ tδ [ψδ ∧ϕ]. (That is, there is a substitution σ that respects ψδ ∧ϕ

such that sδσ = sγ and tδσ = tγ .)

Continuing our example: the only gsc terms of type int are values. Hence, C = {([], i< n), ([], i≥ n)}
is a cover set of recdown f n i a≈ tailup f n i a. Using (Case), we obtain (E2,H2) ⊢ (E3,H2) with E3 ={
(ς2 ; recdown f n i a≈ tailup f n i a ; τ2) [i < n], (ς2 ; recdown f n i a≈ tailup f n i a ; τ2) [i≥ n]

}
The bounding terms ς2,τ2 are unchanged because the substitutions in the cover set are both empty.

(Simplify) With (Simplify) we use a rule ℓ→ r [ϕ] ∈ R∪Rcalc to rewrite an equation C[ℓδ ] ≃ t [ψ].
The requirement ψ |=δ ϕ makes sure that the δ -instance of ℓ→ r [ϕ] is actually applicable. The bounding
terms are not affected by the reduction.

Continuing our example, the first equation in E3 has constraint i < n, so we apply (Simplify) on both
sides of this equation, using (R1) and (R3). For the second equation, we also apply (Simplify) to both
sides, using (R2) and (R4). We obtain (E3,H2) ⊢∗ (E4,H2) with

E4 =

{
(ς2 ; a≈ a ; τ2) [i < n]

(ς2 ; f i (recdown f n (i−1) a)≈ tailup f (n+1) i ( f n a) ; τ2) [i≥ n]

}

(Delete) This deduction rule allows us to remove an equation that has an unsatisfiable constraint, or
whose two sides are syntactically equal. In our example, we use (Delete) and obtain (E4,H2) ⊢ (E5,H2)

E5 = {(ς2 ; f i (recdown f n (i−1) a)≈ tailup f (n+1) i ( f n a) ; τ2) [i≥ n]}

(Alter) If is often useful to rewrite an equation (context) to another that might be syntactically different,
but has the same ground instances (or at least: the same ground semi-constructor instances). Indeed, this
may even be necessary, for instance to support the application of a rewrite rule through (Simplify).

Definition 6 We say that an equation context (ς ′ ; s′ ≈ t ′ ; τ′) [ϕ] generalizes (ς ; s ≈ t ; τ) [ψ] if for
every gsc substitution γ that respects (ς ; s ≈ t ; τ) [ψ] there is a substitution δ that respects (ς ′ ; s′ ≈
t ′ ; τ′) [ϕ] such that sγ = s′δ and tγ = t ′δ , and ςγ ⪰ ς ′δ and τγ ⪰ τ′δ . It alters (ς ; s≈ t ; τ) [ψ] if both
(ς ′ ; s′ ≈ t ′ ; τ′) [ϕ] generalizes (ς ; s≈ t ; τ) [ψ], and (ς ; s≈ t ; τ) [ψ] generalizes (ς ′ ; s′ ≈ t ′ ; τ′) [ϕ].

There are many ways to use the (Alter) rule, but following the discussion in [9], we will particularly
apply it in two ways: (i). Replacing a constraint by an equi-satisfiable one (ii). Replacing variables by
equivalent variables or values.

Continuing our example, we apply (Alter) with case (i) to obtain (E5,H2) ⊢ (E6,H2), with

E6 =
{
(ς2 ; f i (recdown f n (i−1) a)≈ tailup f (n+1) i ( f n a) ; τ2) [i′ = i−1∧n′ = n+1∧ i≥ n]

}
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To allow this rule to be applied, we must have ς2 ⪰ f i (recdown f n (i−1) a) [ϕ] and τ2 ⪰ tailup f (n+
1) i ( f n a) [ϕ] where ϕ is the constraint i′ = i− 1∧ n′ = n+ 1∧ i ≥ n. But this follows immediately
from (⋆⋆): if ς ≻ s [i≥ n] then also ς ≻ s [i′ = i−1∧n′ = n+1∧ i≥ n], and similar for τ≻ t [i≥ n].

Our previous (Alter) step allows us to continue on the example by two successive (Simplify) steps,
using calculation rules i−1→ i′ [i′ = i−1] and n+1→ n′ [n′ = n+1], to obtain (E7,H2), with

E7 =
{
(ς2 ; f i (recdown f n i′ a)≈ tailup f n′ i ( f n a) ; τ2) [i′ = i−1∧n′ = n+1∧ i≥ n]

}
(Hypothesis) Similar to (Simplify), we can use an induction hypothesis to reduce either side of an
equation. Here, finally, the bounding terms ς ,τ come into play, as we need to make sure that we have a
decrease of some kind, to apply induction.

We apply (Hypothesis) on the lhs of E7 with the induction hypothesis from H2 in the direction
recdown f n i a → tailup f n i a, with substitution [i := i′]. We obtain (E7,H2) ⊢ (E8,H2) with

E8 =
{
(ς2 ; f i (tailup f n i′ a)≈ tailup f n′ i ( f n a) ; τ2) [i′ = i−1∧n′ = n+1∧ i≥ n]

}
To be allowed to apply this deduction rule, we must show that the following≻ requirements are satisfied:

recdown f n i a ≻ recdown f n i′ a [i′ = i−1∧n′ = n+1∧ i≥ n]
recdown f n i a ≻ tailup f n i′ a [i′ = i−1∧n′ = n+1∧ i≥ n]

(REQ1) recdown f n i a ⪰ f i (tailup f n i′ a) [i′ = i−1∧n′ = n+1∧ i≥ n]

The first of these is satisfied by property (⋆⋆). The second is an immediate consequence of the third,
since f i (tailup f n i′ a)� tailup f n i′ a and we have committed to let � be included in ≻. For the third,
we remember that (REQ1) still needs to be satisfied. Since we have set ⪰ as the reflexive closure of ≻,
this property is only satisfied if recdown f n i a≻ f i (tailup f n i′ a) [i′ = i−1∧n′ = n+1∧ i≥ n].

Let ς9 = f i (tailup f n i′ a) and τ9 = tailup f n′ i ( f n a). We apply (Induct) to (E8,H2) and obtain

E9 =
{
(ς9 ; f i (tailup f n i′ a)≈ tailup f n′ i ( f n a) ; τ9) [i′ = i−1∧n′ = n+1∧ i≥ n]

}
H9 =H2∪{ f i (tailup f n i′ a)≈ tailup f n′ i ( f n a) [i′ = i−1∧n′ = n+1∧ i≥ n]}

Next, we use (Case) once more, splitting up the constraint E9 into i = n and i > n, giving (E10,H9):

E10 =

{
(ς9 ; f i (tailup f n i′ a)≈ tailup f n′ i ( f n a) ; τ9) [i′ = i−1∧n′ = n+1∧ i = n]

(ς9 ; f i (tailup f n i′ a)≈ tailup f n′ i ( f n a) ; τ9) [i′ = i−1∧n′ = n+1∧ i > n]

}
Observing that i′ = i− 1∧ n′ = n+ 1∧ i = n implies both n > i′ and n′ > i, and that i′ = i− 1∧ n′ =
n+ 1∧ i > n implies both n ≤ i′ and n′ ≤ i, we use (Simplify) on both sides of the first equation with
(R3) and on both sides of the second equation with (R4) respectively, to deduce (E10,H9) ⊢∗ (E11,H9):

E11 =


(ς9 ; f i a≈ f n a ; τ9) [i′ = i−1∧n′ = n+1∧ i = n]
(ς9 ; f i (tailup f (n+1) i′ ( f n a))≈ tailup f (n′+1) i ( f n′ ( f n a)) ; τ9)

[i′ = i−1∧n′ = n+1∧ i > n]


The first equation above does not satisfy the requirements for (Delete), even though the i = n part of the
constraint makes it look very delete-worthy. With (Alter) (case (ii)), we replace the first equation context
by (ς9 ; f n a≈ f n a ; τ9) [i′ = i−1∧n′ = n+1∧ i = n], which may immediately be deleted. We also
use (Alter) (now case (i)) on the second equation, succeeded by (Simplify). This yields (E12,H9) with

E12 =

{
(ς9 ; f i (tailup f n′ i′ ( f n a))≈ tailup f n′′ i ( f n′ ( f n a)) ; τ9)

[i′ = i−1∧n′ = n+1∧n′′ = n′+1∧ i > n]

}
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(H-Delete). With this deduction rule we may rewrite an equation with an instance of equation inH.
In our example, consider the second equation inH9. Let δ = [n := n′,n′ := n′′,a := f n a]. Using (H-

Delete), we can deduce (E12,H9) ⊢ ( /0,H9) if one of the following ordering requirements are satisfied:

ς9 = f i (tailup f n i′ a)≻ f i (tailup f n′ i′ ( f n a)) [i′ = i−1∧n′ = n+1∧ i≥ n]
τ9 = tailup f n′ i ( f n a)≻ tailup f n′′ i ( f n′ ( f n a)) [i′ = i−1∧n′ = n+1∧ i≥ n]

We obtained (E1, /0) ⊢∗ ( /0,H9). By Theorem 1 recdown f n i a≈ tailup f n i a is an inductive theorem –
provided we have a suitable bounding pair that satisfies (REQ1). But this is easily achieved: let ≻ equal
(→R∪Q ∪�)+ where Q= {recdown f n i a→ f i (tailup f n i′ a) [i′ = i−1∧n′ = n+1∧ i≥ n]}.

It is easy to see that this is indeed a bounding pair if →R∪Q is terminating. Termination can for
instance be proved using static dependency pairs [7].

Remark 1 The choice to let ≻ be a relation (→R∪Q ∪�)+ is quite natural: in traditional definitions of
rewriting induction [10, 6, 9] this is the only choice for (≻,⪰), with Q always being a directed version
of the last H (so in the case of this example, H9). However, while such a choice is natural in strategies
for rewriting induction, we leave it open in the definition to allow for alternative orderings.

4 Closing remarks

Two deduction rules we did not demonstrate are (Generalize) and (Postulate). Although (Generalize)
appears to be very similar to (Alter) (in fact, every step that can be done by (Alter) can also be done
by (Generalize)), they are used quite differently: (Alter) is designed to set up an equation for the use of
simplification or deletion, while (Generalize) and (Postulate) are a way to perform of lemma generation.

Lemma generation is often needed in practice to obtain a successful RI proof. This was not visible
in the running example in subsection 3.2, where we could for example continue on the equation in E7 by
applying the hypothesis in H2, which was automatically generated by (Induct), in an (Hypothesis)-step.
However, in many practical situations the hypothesis generated by (Induct) is not applicable, and we
first have to use (Generalize) to introduce a more general equation, suitable to save as hypothesis for
later usage in (Hypothesis) or (H-Delete). How to find such generalizations automatically is a separate
topic, and beyond the scope of this paper. The idea of (Postulate) is similar to (Generalize), but rather
than replacing the original equation by a generalized equation, we add the generalized equation as a new
equation and apply (Induct) on this new equation to obtain the required induction hypothesis.

We have not demonstrated (Semi-constructor) either. With this deduction rule we can split up an
equation that contains a constructor or partially applied function symbols. For example, we can split up
foldl g (h 0 x)≈ foldl h (g 0 x) into two equations: g ≈ h and h 0 x≈ g 0 x.

Implementation and work in progress A basic version of Bounded RI for LCSTRSs has been imple-
mented in Cora (available on https://github.com/hezzel/cora).

Considering work in progress, we are currently working on RI as a method for proving ground
confluence in LCSTRSs. This builds on the work of [4], where the authors showed that this is possible
for first-order unconstrained rewriting. Ground confluence is of relevance for completeness because for
ground confluent LCSTRSs we can extend RI with a new deduction rule, in order to disprove equations
to be inductive theorems. For first-order constrained rewriting this has been shown in [6], and we want
to generalize this result to RI for LCSTRSs.
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